Coverage Summary for Class: DoubleMath (com.google.common.math)

Class Method, % Line, %
DoubleMath 0% (0/19) 0% (0/116)
DoubleMath$1 0% (0/1) 0% (0/1)
Total 0% (0/20) 0% (0/117)


1 /* 2  * Copyright (C) 2011 The Guava Authors 3  * 4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5  * in compliance with the License. You may obtain a copy of the License at 6  * 7  * http://www.apache.org/licenses/LICENSE-2.0 8  * 9  * Unless required by applicable law or agreed to in writing, software distributed under the License 10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11  * or implied. See the License for the specific language governing permissions and limitations under 12  * the License. 13  */ 14  15 package com.google.common.math; 16  17 import static com.google.common.base.Preconditions.checkArgument; 18 import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 19 import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 20 import static com.google.common.math.DoubleUtils.getSignificand; 21 import static com.google.common.math.DoubleUtils.isFinite; 22 import static com.google.common.math.DoubleUtils.isNormal; 23 import static com.google.common.math.DoubleUtils.scaleNormalize; 24 import static com.google.common.math.MathPreconditions.checkInRangeForRoundingInputs; 25 import static com.google.common.math.MathPreconditions.checkNonNegative; 26 import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 27 import static java.lang.Math.abs; 28 import static java.lang.Math.copySign; 29 import static java.lang.Math.getExponent; 30 import static java.lang.Math.log; 31 import static java.lang.Math.rint; 32  33 import com.google.common.annotations.GwtCompatible; 34 import com.google.common.annotations.GwtIncompatible; 35 import com.google.common.annotations.VisibleForTesting; 36 import com.google.common.primitives.Booleans; 37 import com.google.errorprone.annotations.CanIgnoreReturnValue; 38 import java.math.BigInteger; 39 import java.math.RoundingMode; 40 import java.util.Iterator; 41  42 /** 43  * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 44  * 45  * @author Louis Wasserman 46  * @since 11.0 47  */ 48 @GwtCompatible(emulated = true) 49 @ElementTypesAreNonnullByDefault 50 public final class DoubleMath { 51  /* 52  * This method returns a value y such that rounding y DOWN (towards zero) gives the same result as 53  * rounding x according to the specified mode. 54  */ 55  @GwtIncompatible // #isMathematicalInteger, com.google.common.math.DoubleUtils 56  static double roundIntermediate(double x, RoundingMode mode) { 57  if (!isFinite(x)) { 58  throw new ArithmeticException("input is infinite or NaN"); 59  } 60  switch (mode) { 61  case UNNECESSARY: 62  checkRoundingUnnecessary(isMathematicalInteger(x)); 63  return x; 64  65  case FLOOR: 66  if (x >= 0.0 || isMathematicalInteger(x)) { 67  return x; 68  } else { 69  return (long) x - 1; 70  } 71  72  case CEILING: 73  if (x <= 0.0 || isMathematicalInteger(x)) { 74  return x; 75  } else { 76  return (long) x + 1; 77  } 78  79  case DOWN: 80  return x; 81  82  case UP: 83  if (isMathematicalInteger(x)) { 84  return x; 85  } else { 86  return (long) x + (x > 0 ? 1 : -1); 87  } 88  89  case HALF_EVEN: 90  return rint(x); 91  92  case HALF_UP: 93  { 94  double z = rint(x); 95  if (abs(x - z) == 0.5) { 96  return x + copySign(0.5, x); 97  } else { 98  return z; 99  } 100  } 101  102  case HALF_DOWN: 103  { 104  double z = rint(x); 105  if (abs(x - z) == 0.5) { 106  return x; 107  } else { 108  return z; 109  } 110  } 111  112  default: 113  throw new AssertionError(); 114  } 115  } 116  117  /** 118  * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 119  * mode, if possible. 120  * 121  * @throws ArithmeticException if 122  * <ul> 123  * <li>{@code x} is infinite or NaN 124  * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 125  * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 126  * Integer.MAX_VALUE} 127  * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 128  * RoundingMode#UNNECESSARY} 129  * </ul> 130  */ 131  @GwtIncompatible // #roundIntermediate 132  public static int roundToInt(double x, RoundingMode mode) { 133  double z = roundIntermediate(x, mode); 134  checkInRangeForRoundingInputs( 135  z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0, x, mode); 136  return (int) z; 137  } 138  139  private static final double MIN_INT_AS_DOUBLE = -0x1p31; 140  private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 141  142  /** 143  * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 144  * mode, if possible. 145  * 146  * @throws ArithmeticException if 147  * <ul> 148  * <li>{@code x} is infinite or NaN 149  * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 150  * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 151  * Long.MAX_VALUE} 152  * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 153  * RoundingMode#UNNECESSARY} 154  * </ul> 155  */ 156  @GwtIncompatible // #roundIntermediate 157  public static long roundToLong(double x, RoundingMode mode) { 158  double z = roundIntermediate(x, mode); 159  checkInRangeForRoundingInputs( 160  MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE, x, mode); 161  return (long) z; 162  } 163  164  private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 165  /* 166  * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 167  * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 168  */ 169  private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 170  171  /** 172  * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 173  * rounding mode, if possible. 174  * 175  * @throws ArithmeticException if 176  * <ul> 177  * <li>{@code x} is infinite or NaN 178  * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 179  * RoundingMode#UNNECESSARY} 180  * </ul> 181  */ 182  // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils 183  @GwtIncompatible 184  public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 185  x = roundIntermediate(x, mode); 186  if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 187  return BigInteger.valueOf((long) x); 188  } 189  int exponent = getExponent(x); 190  long significand = getSignificand(x); 191  BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 192  return (x < 0) ? result.negate() : result; 193  } 194  195  /** 196  * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 197  * {@code k}. 198  */ 199  @GwtIncompatible // com.google.common.math.DoubleUtils 200  public static boolean isPowerOfTwo(double x) { 201  if (x > 0.0 && isFinite(x)) { 202  long significand = getSignificand(x); 203  return (significand & (significand - 1)) == 0; 204  } 205  return false; 206  } 207  208  /** 209  * Returns the base 2 logarithm of a double value. 210  * 211  * <p>Special cases: 212  * 213  * <ul> 214  * <li>If {@code x} is NaN or less than zero, the result is NaN. 215  * <li>If {@code x} is positive infinity, the result is positive infinity. 216  * <li>If {@code x} is positive or negative zero, the result is negative infinity. 217  * </ul> 218  * 219  * <p>The computed result is within 1 ulp of the exact result. 220  * 221  * <p>If the result of this method will be immediately rounded to an {@code int}, {@link 222  * #log2(double, RoundingMode)} is faster. 223  */ 224  public static double log2(double x) { 225  return log(x) / LN_2; // surprisingly within 1 ulp according to tests 226  } 227  228  /** 229  * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 230  * {@code int}. 231  * 232  * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 233  * 234  * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 235  * infinite 236  */ 237  @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 238  @SuppressWarnings("fallthrough") 239  public static int log2(double x, RoundingMode mode) { 240  checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 241  int exponent = getExponent(x); 242  if (!isNormal(x)) { 243  return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 244  // Do the calculation on a normal value. 245  } 246  // x is positive, finite, and normal 247  boolean increment; 248  switch (mode) { 249  case UNNECESSARY: 250  checkRoundingUnnecessary(isPowerOfTwo(x)); 251  // fall through 252  case FLOOR: 253  increment = false; 254  break; 255  case CEILING: 256  increment = !isPowerOfTwo(x); 257  break; 258  case DOWN: 259  increment = exponent < 0 & !isPowerOfTwo(x); 260  break; 261  case UP: 262  increment = exponent >= 0 & !isPowerOfTwo(x); 263  break; 264  case HALF_DOWN: 265  case HALF_EVEN: 266  case HALF_UP: 267  double xScaled = scaleNormalize(x); 268  // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 269  // so log2(x) is never exactly exponent + 0.5. 270  increment = (xScaled * xScaled) > 2.0; 271  break; 272  default: 273  throw new AssertionError(); 274  } 275  return increment ? exponent + 1 : exponent; 276  } 277  278  private static final double LN_2 = log(2); 279  280  /** 281  * Returns {@code true} if {@code x} represents a mathematical integer. 282  * 283  * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 284  * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 285  */ 286  @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 287  public static boolean isMathematicalInteger(double x) { 288  return isFinite(x) 289  && (x == 0.0 290  || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 291  } 292  293  /** 294  * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 295  * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if {@code n! > 296  * Double.MAX_VALUE}. 297  * 298  * <p>The result is within 1 ulp of the true value. 299  * 300  * @throws IllegalArgumentException if {@code n < 0} 301  */ 302  public static double factorial(int n) { 303  checkNonNegative("n", n); 304  if (n > MAX_FACTORIAL) { 305  return Double.POSITIVE_INFINITY; 306  } else { 307  // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 308  // result than multiplying by everySixteenthFactorial[n >> 4] directly. 309  double accum = 1.0; 310  for (int i = 1 + (n & ~0xf); i <= n; i++) { 311  accum *= i; 312  } 313  return accum * everySixteenthFactorial[n >> 4]; 314  } 315  } 316  317  @VisibleForTesting static final int MAX_FACTORIAL = 170; 318  319  @VisibleForTesting 320  static final double[] everySixteenthFactorial = { 321  0x1.0p0, 322  0x1.30777758p44, 323  0x1.956ad0aae33a4p117, 324  0x1.ee69a78d72cb6p202, 325  0x1.fe478ee34844ap295, 326  0x1.c619094edabffp394, 327  0x1.3638dd7bd6347p498, 328  0x1.7cac197cfe503p605, 329  0x1.1e5dfc140e1e5p716, 330  0x1.8ce85fadb707ep829, 331  0x1.95d5f3d928edep945 332  }; 333  334  /** 335  * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 336  * 337  * <p>Technically speaking, this is equivalent to {@code Math.abs(a - b) <= tolerance || 338  * Double.valueOf(a).equals(Double.valueOf(b))}. 339  * 340  * <p>Notable special cases include: 341  * 342  * <ul> 343  * <li>All NaNs are fuzzily equal. 344  * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 345  * <li>Positive and negative zero are always fuzzily equal. 346  * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} 347  * and {@code b} are fuzzily equal if and only if {@code a == b}. 348  * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 349  * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 350  * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 351  * </ul> 352  * 353  * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 354  * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 355  * implementations. 356  * 357  * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 358  * @since 13.0 359  */ 360  public static boolean fuzzyEquals(double a, double b, double tolerance) { 361  MathPreconditions.checkNonNegative("tolerance", tolerance); 362  return Math.copySign(a - b, 1.0) <= tolerance 363  // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 364  || (a == b) // needed to ensure that infinities equal themselves 365  || (Double.isNaN(a) && Double.isNaN(b)); 366  } 367  368  /** 369  * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 370  * 371  * <p>This method is equivalent to {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, 372  * b)}. In particular, like {@link Double#compare(double, double)}, it treats all NaN values as 373  * equal and greater than all other values (including {@link Double#POSITIVE_INFINITY}). 374  * 375  * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in {@link 376  * Comparable#compareTo} implementations. In particular, it is not transitive. 377  * 378  * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 379  * @since 13.0 380  */ 381  public static int fuzzyCompare(double a, double b, double tolerance) { 382  if (fuzzyEquals(a, b, tolerance)) { 383  return 0; 384  } else if (a < b) { 385  return -1; 386  } else if (a > b) { 387  return 1; 388  } else { 389  return Booleans.compare(Double.isNaN(a), Double.isNaN(b)); 390  } 391  } 392  393  /** 394  * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 395  * {@code values}. 396  * 397  * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 398  * the arithmetic mean of the population. 399  * 400  * @param values a nonempty series of values 401  * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 402  * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 403  * values. 404  */ 405  @Deprecated 406  // com.google.common.math.DoubleUtils 407  @GwtIncompatible 408  public static double mean(double... values) { 409  checkArgument(values.length > 0, "Cannot take mean of 0 values"); 410  long count = 1; 411  double mean = checkFinite(values[0]); 412  for (int index = 1; index < values.length; ++index) { 413  checkFinite(values[index]); 414  count++; 415  // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 416  mean += (values[index] - mean) / count; 417  } 418  return mean; 419  } 420  421  /** 422  * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 423  * {@code values}. 424  * 425  * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 426  * the arithmetic mean of the population. 427  * 428  * @param values a nonempty series of values 429  * @throws IllegalArgumentException if {@code values} is empty 430  * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 431  * values. 432  */ 433  @Deprecated 434  public static double mean(int... values) { 435  checkArgument(values.length > 0, "Cannot take mean of 0 values"); 436  // The upper bound on the length of an array and the bounds on the int values mean that, in 437  // this case only, we can compute the sum as a long without risking overflow or loss of 438  // precision. So we do that, as it's slightly quicker than the Knuth algorithm. 439  long sum = 0; 440  for (int index = 0; index < values.length; ++index) { 441  sum += values[index]; 442  } 443  return (double) sum / values.length; 444  } 445  446  /** 447  * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 448  * {@code values}. 449  * 450  * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 451  * the arithmetic mean of the population. 452  * 453  * @param values a nonempty series of values, which will be converted to {@code double} values 454  * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) 455  * @throws IllegalArgumentException if {@code values} is empty 456  * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 457  * values. 458  */ 459  @Deprecated 460  public static double mean(long... values) { 461  checkArgument(values.length > 0, "Cannot take mean of 0 values"); 462  long count = 1; 463  double mean = values[0]; 464  for (int index = 1; index < values.length; ++index) { 465  count++; 466  // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 467  mean += (values[index] - mean) / count; 468  } 469  return mean; 470  } 471  472  /** 473  * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 474  * {@code values}. 475  * 476  * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 477  * the arithmetic mean of the population. 478  * 479  * @param values a nonempty series of values, which will be converted to {@code double} values 480  * (this may cause loss of precision) 481  * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 482  * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 483  * values. 484  */ 485  @Deprecated 486  // com.google.common.math.DoubleUtils 487  @GwtIncompatible 488  public static double mean(Iterable<? extends Number> values) { 489  return mean(values.iterator()); 490  } 491  492  /** 493  * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 494  * {@code values}. 495  * 496  * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 497  * the arithmetic mean of the population. 498  * 499  * @param values a nonempty series of values, which will be converted to {@code double} values 500  * (this may cause loss of precision) 501  * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 502  * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 503  * values. 504  */ 505  @Deprecated 506  // com.google.common.math.DoubleUtils 507  @GwtIncompatible 508  public static double mean(Iterator<? extends Number> values) { 509  checkArgument(values.hasNext(), "Cannot take mean of 0 values"); 510  long count = 1; 511  double mean = checkFinite(values.next().doubleValue()); 512  while (values.hasNext()) { 513  double value = checkFinite(values.next().doubleValue()); 514  count++; 515  // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 516  mean += (value - mean) / count; 517  } 518  return mean; 519  } 520  521  @GwtIncompatible // com.google.common.math.DoubleUtils 522  @CanIgnoreReturnValue 523  private static double checkFinite(double argument) { 524  checkArgument(isFinite(argument)); 525  return argument; 526  } 527  528  private DoubleMath() {} 529 }