Coverage Summary for Class: DoubleUtils (com.google.common.math)

Class Class, % Method, % Line, %
DoubleUtils 0% (0/1) 0% (0/8) 0% (0/30)


1 /* 2  * Copyright (C) 2011 The Guava Authors 3  * 4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5  * in compliance with the License. You may obtain a copy of the License at 6  * 7  * http://www.apache.org/licenses/LICENSE-2.0 8  * 9  * Unless required by applicable law or agreed to in writing, software distributed under the License 10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11  * or implied. See the License for the specific language governing permissions and limitations under 12  * the License. 13  */ 14  15 package com.google.common.math; 16  17 import static com.google.common.base.Preconditions.checkArgument; 18 import static java.lang.Double.MAX_EXPONENT; 19 import static java.lang.Double.MIN_EXPONENT; 20 import static java.lang.Double.POSITIVE_INFINITY; 21 import static java.lang.Double.doubleToRawLongBits; 22 import static java.lang.Double.isNaN; 23 import static java.lang.Double.longBitsToDouble; 24 import static java.lang.Math.getExponent; 25  26 import com.google.common.annotations.GwtIncompatible; 27 import com.google.common.annotations.VisibleForTesting; 28 import java.math.BigInteger; 29  30 /** 31  * Utilities for {@code double} primitives. 32  * 33  * @author Louis Wasserman 34  */ 35 @GwtIncompatible 36 @ElementTypesAreNonnullByDefault 37 final class DoubleUtils { 38  private DoubleUtils() {} 39  40  static double nextDown(double d) { 41  return -Math.nextUp(-d); 42  } 43  44  // The mask for the significand, according to the {@link 45  // Double#doubleToRawLongBits(double)} spec. 46  static final long SIGNIFICAND_MASK = 0x000fffffffffffffL; 47  48  // The mask for the exponent, according to the {@link 49  // Double#doubleToRawLongBits(double)} spec. 50  static final long EXPONENT_MASK = 0x7ff0000000000000L; 51  52  // The mask for the sign, according to the {@link 53  // Double#doubleToRawLongBits(double)} spec. 54  static final long SIGN_MASK = 0x8000000000000000L; 55  56  static final int SIGNIFICAND_BITS = 52; 57  58  static final int EXPONENT_BIAS = 1023; 59  60  /** The implicit 1 bit that is omitted in significands of normal doubles. */ 61  static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1; 62  63  static long getSignificand(double d) { 64  checkArgument(isFinite(d), "not a normal value"); 65  int exponent = getExponent(d); 66  long bits = doubleToRawLongBits(d); 67  bits &= SIGNIFICAND_MASK; 68  return (exponent == MIN_EXPONENT - 1) ? bits << 1 : bits | IMPLICIT_BIT; 69  } 70  71  static boolean isFinite(double d) { 72  return getExponent(d) <= MAX_EXPONENT; 73  } 74  75  static boolean isNormal(double d) { 76  return getExponent(d) >= MIN_EXPONENT; 77  } 78  79  /* 80  * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive, 81  * normal, and finite. 82  */ 83  static double scaleNormalize(double x) { 84  long significand = doubleToRawLongBits(x) & SIGNIFICAND_MASK; 85  return longBitsToDouble(significand | ONE_BITS); 86  } 87  88  static double bigToDouble(BigInteger x) { 89  // This is an extremely fast implementation of BigInteger.doubleValue(). JDK patch pending. 90  BigInteger absX = x.abs(); 91  int exponent = absX.bitLength() - 1; 92  // exponent == floor(log2(abs(x))) 93  if (exponent < Long.SIZE - 1) { 94  return x.longValue(); 95  } else if (exponent > MAX_EXPONENT) { 96  return x.signum() * POSITIVE_INFINITY; 97  } 98  99  /* 100  * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make rounding 101  * easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or 102  * down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and signifFloor the 103  * top SIGNIFICAND_BITS + 1. 104  * 105  * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent). 106  */ 107  int shift = exponent - SIGNIFICAND_BITS - 1; 108  long twiceSignifFloor = absX.shiftRight(shift).longValue(); 109  long signifFloor = twiceSignifFloor >> 1; 110  signifFloor &= SIGNIFICAND_MASK; // remove the implied bit 111  112  /* 113  * We round up if either the fractional part of signif is strictly greater than 0.5 (which is 114  * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is 115  * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set). 116  */ 117  boolean increment = 118  (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift); 119  long signifRounded = increment ? signifFloor + 1 : signifFloor; 120  long bits = (long) (exponent + EXPONENT_BIAS) << SIGNIFICAND_BITS; 121  bits += signifRounded; 122  /* 123  * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to 124  * the exponent. This is exactly the behavior we get from just adding signifRounded to bits 125  * directly. If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to 126  * Double.POSITIVE_INFINITY. 127  */ 128  bits |= x.signum() & SIGN_MASK; 129  return longBitsToDouble(bits); 130  } 131  132  /** Returns its argument if it is non-negative, zero if it is negative. */ 133  static double ensureNonNegative(double value) { 134  checkArgument(!isNaN(value)); 135  return Math.max(value, 0.0); 136  } 137  138  @VisibleForTesting static final long ONE_BITS = 0x3ff0000000000000L; 139 }