Coverage Summary for Class: InetAddresses (com.google.common.net)
| Class | Method, % | Line, % |
|---|---|---|
| InetAddresses | 0% (0/43) | 0% (0/308) |
| InetAddresses$TeredoInfo | 0% (0/5) | 0% (0/11) |
| Total | 0% (0/48) | 0% (0/319) |
1 /* 2 * Copyright (C) 2008 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5 * in compliance with the License. You may obtain a copy of the License at 6 * 7 * http://www.apache.org/licenses/LICENSE-2.0 8 * 9 * Unless required by applicable law or agreed to in writing, software distributed under the License 10 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11 * or implied. See the License for the specific language governing permissions and limitations under 12 * the License. 13 */ 14 15 package com.google.common.net; 16 17 import static com.google.common.base.Preconditions.checkArgument; 18 import static com.google.common.base.Preconditions.checkNotNull; 19 20 import com.google.common.annotations.Beta; 21 import com.google.common.annotations.GwtIncompatible; 22 import com.google.common.base.CharMatcher; 23 import com.google.common.base.MoreObjects; 24 import com.google.common.hash.Hashing; 25 import com.google.common.io.ByteStreams; 26 import com.google.common.primitives.Ints; 27 import java.math.BigInteger; 28 import java.net.Inet4Address; 29 import java.net.Inet6Address; 30 import java.net.InetAddress; 31 import java.net.UnknownHostException; 32 import java.nio.ByteBuffer; 33 import java.util.Arrays; 34 import java.util.Locale; 35 import javax.annotation.CheckForNull; 36 37 /** 38 * Static utility methods pertaining to {@link InetAddress} instances. 39 * 40 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 41 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 42 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 43 * literals -- there is no blocking DNS penalty for a malformed string. 44 * 45 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 46 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 47 * the address in network byte order. 48 * 49 * <p>Examples of IP addresses and their byte representations: 50 * 51 * <dl> 52 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 53 * <dd>{@code 7f 00 00 01} 54 * <dt>The IPv6 loopback address, {@code "::1"}. 55 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 56 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 57 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 58 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 59 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 60 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 61 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 62 * </dl> 63 * 64 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 65 * 66 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 67 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 68 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 69 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 70 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 71 * 72 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 73 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 74 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 75 * "mapped" addresses return {@link Inet4Address} objects. 76 * 77 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 78 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 79 * suggestions usually recommend discarding any packets with source or destination addresses in the 80 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 81 * information on "bogons", including lists of IPv6 bogon space, see: 82 * 83 * <ul> 84 * <li><a target="_parent" 85 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 86 * org/wiki/Bogon_filtering</a> 87 * <li><a target="_parent" 88 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 89 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 90 * Bogons/v6bogon.html</a> 91 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 92 * space.net/~gert/RIPE/ipv6-filters.html</a> 93 * </ul> 94 * 95 * @author Erik Kline 96 * @since 5.0 97 */ 98 @Beta 99 @GwtIncompatible 100 @ElementTypesAreNonnullByDefault 101 public final class InetAddresses { 102 private static final int IPV4_PART_COUNT = 4; 103 private static final int IPV6_PART_COUNT = 8; 104 private static final char IPV4_DELIMITER = '.'; 105 private static final char IPV6_DELIMITER = ':'; 106 private static final CharMatcher IPV4_DELIMITER_MATCHER = CharMatcher.is(IPV4_DELIMITER); 107 private static final CharMatcher IPV6_DELIMITER_MATCHER = CharMatcher.is(IPV6_DELIMITER); 108 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 109 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 110 111 private InetAddresses() {} 112 113 /** 114 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 115 * 116 * @param bytes byte array representing an IPv4 address (should be of length 4) 117 * @return {@link Inet4Address} corresponding to the supplied byte array 118 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 119 */ 120 private static Inet4Address getInet4Address(byte[] bytes) { 121 checkArgument( 122 bytes.length == 4, 123 "Byte array has invalid length for an IPv4 address: %s != 4.", 124 bytes.length); 125 126 // Given a 4-byte array, this cast should always succeed. 127 return (Inet4Address) bytesToInetAddress(bytes); 128 } 129 130 /** 131 * Returns the {@link InetAddress} having the given string representation. 132 * 133 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 134 * 135 * <p>Anything after a {@code %} in an IPv6 address is ignored (assumed to be a Scope ID). 136 * 137 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 138 * "192.168.0.1"} or {@code "2001:db8::1"} 139 * @return {@link InetAddress} representing the argument 140 * @throws IllegalArgumentException if the argument is not a valid IP string literal 141 */ 142 public static InetAddress forString(String ipString) { 143 byte[] addr = ipStringToBytes(ipString); 144 145 // The argument was malformed, i.e. not an IP string literal. 146 if (addr == null) { 147 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 148 } 149 150 return bytesToInetAddress(addr); 151 } 152 153 /** 154 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 155 * otherwise. 156 * 157 * @param ipString {@code String} to evaluated as an IP string literal 158 * @return {@code true} if the argument is a valid IP string literal 159 */ 160 public static boolean isInetAddress(String ipString) { 161 return ipStringToBytes(ipString) != null; 162 } 163 164 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 165 @CheckForNull 166 private static byte[] ipStringToBytes(String ipStringParam) { 167 String ipString = ipStringParam; 168 // Make a first pass to categorize the characters in this string. 169 boolean hasColon = false; 170 boolean hasDot = false; 171 int percentIndex = -1; 172 for (int i = 0; i < ipString.length(); i++) { 173 char c = ipString.charAt(i); 174 if (c == '.') { 175 hasDot = true; 176 } else if (c == ':') { 177 if (hasDot) { 178 return null; // Colons must not appear after dots. 179 } 180 hasColon = true; 181 } else if (c == '%') { 182 percentIndex = i; 183 break; // everything after a '%' is ignored (it's a Scope ID): http://superuser.com/a/99753 184 } else if (Character.digit(c, 16) == -1) { 185 return null; // Everything else must be a decimal or hex digit. 186 } 187 } 188 189 // Now decide which address family to parse. 190 if (hasColon) { 191 if (hasDot) { 192 ipString = convertDottedQuadToHex(ipString); 193 if (ipString == null) { 194 return null; 195 } 196 } 197 if (percentIndex != -1) { 198 ipString = ipString.substring(0, percentIndex); 199 } 200 return textToNumericFormatV6(ipString); 201 } else if (hasDot) { 202 if (percentIndex != -1) { 203 return null; // Scope IDs are not supported for IPV4 204 } 205 return textToNumericFormatV4(ipString); 206 } 207 return null; 208 } 209 210 @CheckForNull 211 private static byte[] textToNumericFormatV4(String ipString) { 212 if (IPV4_DELIMITER_MATCHER.countIn(ipString) + 1 != IPV4_PART_COUNT) { 213 return null; // Wrong number of parts 214 } 215 216 byte[] bytes = new byte[IPV4_PART_COUNT]; 217 int start = 0; 218 // Iterate through the parts of the ip string. 219 // Invariant: start is always the beginning of an octet. 220 for (int i = 0; i < IPV4_PART_COUNT; i++) { 221 int end = ipString.indexOf(IPV4_DELIMITER, start); 222 if (end == -1) { 223 end = ipString.length(); 224 } 225 try { 226 bytes[i] = parseOctet(ipString, start, end); 227 } catch (NumberFormatException ex) { 228 return null; 229 } 230 start = end + 1; 231 } 232 233 return bytes; 234 } 235 236 @CheckForNull 237 private static byte[] textToNumericFormatV6(String ipString) { 238 // An address can have [2..8] colons. 239 int delimiterCount = IPV6_DELIMITER_MATCHER.countIn(ipString); 240 if (delimiterCount < 2 || delimiterCount > IPV6_PART_COUNT) { 241 return null; 242 } 243 int partsSkipped = IPV6_PART_COUNT - (delimiterCount + 1); // estimate; may be modified later 244 boolean hasSkip = false; 245 // Scan for the appearance of ::, to mark a skip-format IPV6 string and adjust the partsSkipped 246 // estimate. 247 for (int i = 0; i < ipString.length() - 1; i++) { 248 if (ipString.charAt(i) == IPV6_DELIMITER && ipString.charAt(i + 1) == IPV6_DELIMITER) { 249 if (hasSkip) { 250 return null; // Can't have more than one :: 251 } 252 hasSkip = true; 253 partsSkipped++; // :: means we skipped an extra part in between the two delimiters. 254 if (i == 0) { 255 partsSkipped++; // Begins with ::, so we skipped the part preceding the first : 256 } 257 if (i == ipString.length() - 2) { 258 partsSkipped++; // Ends with ::, so we skipped the part after the last : 259 } 260 } 261 } 262 if (ipString.charAt(0) == IPV6_DELIMITER && ipString.charAt(1) != IPV6_DELIMITER) { 263 return null; // ^: requires ^:: 264 } 265 if (ipString.charAt(ipString.length() - 1) == IPV6_DELIMITER 266 && ipString.charAt(ipString.length() - 2) != IPV6_DELIMITER) { 267 return null; // :$ requires ::$ 268 } 269 if (hasSkip && partsSkipped <= 0) { 270 return null; // :: must expand to at least one '0' 271 } 272 if (!hasSkip && delimiterCount + 1 != IPV6_PART_COUNT) { 273 return null; // Incorrect number of parts 274 } 275 276 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 277 try { 278 // Iterate through the parts of the ip string. 279 // Invariant: start is always the beginning of a hextet, or the second ':' of the skip 280 // sequence "::" 281 int start = 0; 282 if (ipString.charAt(0) == IPV6_DELIMITER) { 283 start = 1; 284 } 285 while (start < ipString.length()) { 286 int end = ipString.indexOf(IPV6_DELIMITER, start); 287 if (end == -1) { 288 end = ipString.length(); 289 } 290 if (ipString.charAt(start) == IPV6_DELIMITER) { 291 // expand zeroes 292 for (int i = 0; i < partsSkipped; i++) { 293 rawBytes.putShort((short) 0); 294 } 295 296 } else { 297 rawBytes.putShort(parseHextet(ipString, start, end)); 298 } 299 start = end + 1; 300 } 301 } catch (NumberFormatException ex) { 302 return null; 303 } 304 return rawBytes.array(); 305 } 306 307 @CheckForNull 308 private static String convertDottedQuadToHex(String ipString) { 309 int lastColon = ipString.lastIndexOf(':'); 310 String initialPart = ipString.substring(0, lastColon + 1); 311 String dottedQuad = ipString.substring(lastColon + 1); 312 byte[] quad = textToNumericFormatV4(dottedQuad); 313 if (quad == null) { 314 return null; 315 } 316 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 317 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 318 return initialPart + penultimate + ":" + ultimate; 319 } 320 321 private static byte parseOctet(String ipString, int start, int end) { 322 // Note: we already verified that this string contains only hex digits, but the string may still 323 // contain non-decimal characters. 324 int length = end - start; 325 if (length <= 0 || length > 3) { 326 throw new NumberFormatException(); 327 } 328 // Disallow leading zeroes, because no clear standard exists on 329 // whether these should be interpreted as decimal or octal. 330 if (length > 1 && ipString.charAt(start) == '0') { 331 throw new NumberFormatException(); 332 } 333 int octet = 0; 334 for (int i = start; i < end; i++) { 335 octet *= 10; 336 int digit = Character.digit(ipString.charAt(i), 10); 337 if (digit < 0) { 338 throw new NumberFormatException(); 339 } 340 octet += digit; 341 } 342 if (octet > 255) { 343 throw new NumberFormatException(); 344 } 345 return (byte) octet; 346 } 347 348 // Parse a hextet out of the ipString from start (inclusive) to end (exclusive) 349 private static short parseHextet(String ipString, int start, int end) { 350 // Note: we already verified that this string contains only hex digits. 351 int length = end - start; 352 if (length <= 0 || length > 4) { 353 throw new NumberFormatException(); 354 } 355 int hextet = 0; 356 for (int i = start; i < end; i++) { 357 hextet = hextet << 4; 358 hextet |= Character.digit(ipString.charAt(i), 16); 359 } 360 return (short) hextet; 361 } 362 363 /** 364 * Convert a byte array into an InetAddress. 365 * 366 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 367 * address is of illegal length." We replace it with an unchecked exception, for use by callers 368 * who already know that addr is an array of length 4 or 16. 369 * 370 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 371 * @return an InetAddress object created from the raw IP address 372 */ 373 private static InetAddress bytesToInetAddress(byte[] addr) { 374 try { 375 return InetAddress.getByAddress(addr); 376 } catch (UnknownHostException e) { 377 throw new AssertionError(e); 378 } 379 } 380 381 /** 382 * Returns the string representation of an {@link InetAddress}. 383 * 384 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 385 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 386 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 387 * uses the uncompressed form. 388 * 389 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 390 * such as "::c000:201". The output does not include a Scope ID. 391 * 392 * @param ip {@link InetAddress} to be converted to an address string 393 * @return {@code String} containing the text-formatted IP address 394 * @since 10.0 395 */ 396 public static String toAddrString(InetAddress ip) { 397 checkNotNull(ip); 398 if (ip instanceof Inet4Address) { 399 // For IPv4, Java's formatting is good enough. 400 return ip.getHostAddress(); 401 } 402 checkArgument(ip instanceof Inet6Address); 403 byte[] bytes = ip.getAddress(); 404 int[] hextets = new int[IPV6_PART_COUNT]; 405 for (int i = 0; i < hextets.length; i++) { 406 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 407 } 408 compressLongestRunOfZeroes(hextets); 409 return hextetsToIPv6String(hextets); 410 } 411 412 /** 413 * Identify and mark the longest run of zeroes in an IPv6 address. 414 * 415 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 416 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 417 * 418 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 419 */ 420 private static void compressLongestRunOfZeroes(int[] hextets) { 421 int bestRunStart = -1; 422 int bestRunLength = -1; 423 int runStart = -1; 424 for (int i = 0; i < hextets.length + 1; i++) { 425 if (i < hextets.length && hextets[i] == 0) { 426 if (runStart < 0) { 427 runStart = i; 428 } 429 } else if (runStart >= 0) { 430 int runLength = i - runStart; 431 if (runLength > bestRunLength) { 432 bestRunStart = runStart; 433 bestRunLength = runLength; 434 } 435 runStart = -1; 436 } 437 } 438 if (bestRunLength >= 2) { 439 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 440 } 441 } 442 443 /** 444 * Convert a list of hextets into a human-readable IPv6 address. 445 * 446 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 447 * place of the elided zeroes. 448 * 449 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 450 */ 451 private static String hextetsToIPv6String(int[] hextets) { 452 // While scanning the array, handle these state transitions: 453 // start->num => "num" start->gap => "::" 454 // num->num => ":num" num->gap => "::" 455 // gap->num => "num" gap->gap => "" 456 StringBuilder buf = new StringBuilder(39); 457 boolean lastWasNumber = false; 458 for (int i = 0; i < hextets.length; i++) { 459 boolean thisIsNumber = hextets[i] >= 0; 460 if (thisIsNumber) { 461 if (lastWasNumber) { 462 buf.append(':'); 463 } 464 buf.append(Integer.toHexString(hextets[i])); 465 } else { 466 if (i == 0 || lastWasNumber) { 467 buf.append("::"); 468 } 469 } 470 lastWasNumber = thisIsNumber; 471 } 472 return buf.toString(); 473 } 474 475 /** 476 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 477 * 478 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 479 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 480 * "[2001:db8::1]"}. 481 * 482 * <p>Per section 3.2.2 of <a target="_parent" 483 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 484 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 485 * 486 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 487 * this method is recommended over {@link InetAddress#toString()} when an IP address string 488 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 489 * IP address string joined by a "/". 490 * 491 * @param ip {@link InetAddress} to be converted to URI string literal 492 * @return {@code String} containing URI-safe string literal 493 */ 494 public static String toUriString(InetAddress ip) { 495 if (ip instanceof Inet6Address) { 496 return "[" + toAddrString(ip) + "]"; 497 } 498 return toAddrString(ip); 499 } 500 501 /** 502 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 503 * the format specified by RFC 3986 section 3.2.2. 504 * 505 * <p>This function is similar to {@link InetAddresses#forString(String)}, however, it requires 506 * that IPv6 addresses are surrounded by square brackets. 507 * 508 * <p>This function is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 509 * 510 * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 511 * @return an InetAddress representing the address in {@code hostAddr} 512 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 513 * address surrounded by square brackets 514 */ 515 public static InetAddress forUriString(String hostAddr) { 516 InetAddress addr = forUriStringNoThrow(hostAddr); 517 if (addr == null) { 518 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 519 } 520 521 return addr; 522 } 523 524 @CheckForNull 525 private static InetAddress forUriStringNoThrow(String hostAddr) { 526 checkNotNull(hostAddr); 527 528 // Decide if this should be an IPv6 or IPv4 address. 529 String ipString; 530 int expectBytes; 531 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 532 ipString = hostAddr.substring(1, hostAddr.length() - 1); 533 expectBytes = 16; 534 } else { 535 ipString = hostAddr; 536 expectBytes = 4; 537 } 538 539 // Parse the address, and make sure the length/version is correct. 540 byte[] addr = ipStringToBytes(ipString); 541 if (addr == null || addr.length != expectBytes) { 542 return null; 543 } 544 545 return bytesToInetAddress(addr); 546 } 547 548 /** 549 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 550 * otherwise. 551 * 552 * @param ipString {@code String} to evaluated as an IP URI host string literal 553 * @return {@code true} if the argument is a valid IP URI host 554 */ 555 public static boolean isUriInetAddress(String ipString) { 556 return forUriStringNoThrow(ipString) != null; 557 } 558 559 /** 560 * Evaluates whether the argument is an IPv6 "compat" address. 561 * 562 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 563 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 564 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 565 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 566 * 567 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 568 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 569 * 570 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 571 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 572 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 573 * 574 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 575 * @return {@code true} if the argument is a valid "compat" address 576 */ 577 public static boolean isCompatIPv4Address(Inet6Address ip) { 578 if (!ip.isIPv4CompatibleAddress()) { 579 return false; 580 } 581 582 byte[] bytes = ip.getAddress(); 583 if ((bytes[12] == 0) 584 && (bytes[13] == 0) 585 && (bytes[14] == 0) 586 && ((bytes[15] == 0) || (bytes[15] == 1))) { 587 return false; 588 } 589 590 return true; 591 } 592 593 /** 594 * Returns the IPv4 address embedded in an IPv4 compatible address. 595 * 596 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 597 * @return {@link Inet4Address} of the embedded IPv4 address 598 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 599 */ 600 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 601 checkArgument( 602 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 603 604 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 605 } 606 607 /** 608 * Evaluates whether the argument is a 6to4 address. 609 * 610 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 611 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 612 * 613 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 614 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 615 * 616 * @param ip {@link Inet6Address} to be examined for 6to4 address format 617 * @return {@code true} if the argument is a 6to4 address 618 */ 619 public static boolean is6to4Address(Inet6Address ip) { 620 byte[] bytes = ip.getAddress(); 621 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 622 } 623 624 /** 625 * Returns the IPv4 address embedded in a 6to4 address. 626 * 627 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 628 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 629 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 630 */ 631 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 632 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 633 634 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 635 } 636 637 /** 638 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 639 * 640 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 641 * of the protocol. More protocols details can be found at: <a target="_parent" 642 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 643 * org/wiki/Teredo_tunneling</a>. 644 * 645 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 646 * 4380</a>. 647 * 648 * @since 5.0 649 */ 650 @Beta 651 public static final class TeredoInfo { 652 private final Inet4Address server; 653 private final Inet4Address client; 654 private final int port; 655 private final int flags; 656 657 /** 658 * Constructs a TeredoInfo instance. 659 * 660 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 661 * be assumed. 662 * 663 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 664 * are out of range of an unsigned short 665 */ 666 // TODO: why is this public? 667 public TeredoInfo( 668 @CheckForNull Inet4Address server, @CheckForNull Inet4Address client, int port, int flags) { 669 checkArgument( 670 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 671 checkArgument( 672 (flags >= 0) && (flags <= 0xffff), 673 "flags '%s' is out of range (0 <= flags <= 0xffff)", 674 flags); 675 676 this.server = MoreObjects.firstNonNull(server, ANY4); 677 this.client = MoreObjects.firstNonNull(client, ANY4); 678 this.port = port; 679 this.flags = flags; 680 } 681 682 public Inet4Address getServer() { 683 return server; 684 } 685 686 public Inet4Address getClient() { 687 return client; 688 } 689 690 public int getPort() { 691 return port; 692 } 693 694 public int getFlags() { 695 return flags; 696 } 697 } 698 699 /** 700 * Evaluates whether the argument is a Teredo address. 701 * 702 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 703 * 704 * @param ip {@link Inet6Address} to be examined for Teredo address format 705 * @return {@code true} if the argument is a Teredo address 706 */ 707 public static boolean isTeredoAddress(Inet6Address ip) { 708 byte[] bytes = ip.getAddress(); 709 return (bytes[0] == (byte) 0x20) 710 && (bytes[1] == (byte) 0x01) 711 && (bytes[2] == 0) 712 && (bytes[3] == 0); 713 } 714 715 /** 716 * Returns the Teredo information embedded in a Teredo address. 717 * 718 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 719 * @return extracted {@code TeredoInfo} 720 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 721 */ 722 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 723 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 724 725 byte[] bytes = ip.getAddress(); 726 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 727 728 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 729 730 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 731 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 732 733 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 734 for (int i = 0; i < clientBytes.length; i++) { 735 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 736 clientBytes[i] = (byte) ~clientBytes[i]; 737 } 738 Inet4Address client = getInet4Address(clientBytes); 739 740 return new TeredoInfo(server, client, port, flags); 741 } 742 743 /** 744 * Evaluates whether the argument is an ISATAP address. 745 * 746 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 747 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 748 * IPv4 address in network byte order [...]" 749 * 750 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 751 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 752 * 753 * @param ip {@link Inet6Address} to be examined for ISATAP address format 754 * @return {@code true} if the argument is an ISATAP address 755 */ 756 public static boolean isIsatapAddress(Inet6Address ip) { 757 758 // If it's a Teredo address with the right port (41217, or 0xa101) 759 // which would be encoded as 0x5efe then it can't be an ISATAP address. 760 if (isTeredoAddress(ip)) { 761 return false; 762 } 763 764 byte[] bytes = ip.getAddress(); 765 766 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 767 768 // Verify that high byte of the 64 bit identifier is zero, modulo 769 // the U/L and G bits, with which we are not concerned. 770 return false; 771 } 772 773 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 774 } 775 776 /** 777 * Returns the IPv4 address embedded in an ISATAP address. 778 * 779 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 780 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 781 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 782 */ 783 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 784 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 785 786 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 787 } 788 789 /** 790 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 791 * types that contain an embedded IPv4 address. 792 * 793 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 794 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 795 * BGP routing table. 796 * 797 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 798 * @return {@code true} if there is an embedded IPv4 client address 799 * @since 7.0 800 */ 801 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 802 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 803 } 804 805 /** 806 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 807 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 808 * 809 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 810 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 811 * BGP routing table. 812 * 813 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 814 * @return {@link Inet4Address} of embedded IPv4 client address 815 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 816 */ 817 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 818 if (isCompatIPv4Address(ip)) { 819 return getCompatIPv4Address(ip); 820 } 821 822 if (is6to4Address(ip)) { 823 return get6to4IPv4Address(ip); 824 } 825 826 if (isTeredoAddress(ip)) { 827 return getTeredoInfo(ip).getClient(); 828 } 829 830 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 831 } 832 833 /** 834 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 835 * 836 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 837 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 838 * 839 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 840 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 841 * 842 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 843 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 844 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 845 * poorly-documented feature.) 846 * 847 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 848 * @return {@code true} if the argument is a valid "mapped" address 849 * @since 10.0 850 */ 851 public static boolean isMappedIPv4Address(String ipString) { 852 byte[] bytes = ipStringToBytes(ipString); 853 if (bytes != null && bytes.length == 16) { 854 for (int i = 0; i < 10; i++) { 855 if (bytes[i] != 0) { 856 return false; 857 } 858 } 859 for (int i = 10; i < 12; i++) { 860 if (bytes[i] != (byte) 0xff) { 861 return false; 862 } 863 } 864 return true; 865 } 866 return false; 867 } 868 869 /** 870 * Coerces an IPv6 address into an IPv4 address. 871 * 872 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 873 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 874 * This function does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 875 * into 29 bits): 876 * 877 * <ul> 878 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 879 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 880 * </ul> 881 * 882 * <p>A "coerced" IPv4 address is equivalent to itself. 883 * 884 * <p>NOTE: This function is failsafe for security purposes: ALL IPv6 addresses (except localhost 885 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 886 * address that might permit elevated privileges. 887 * 888 * @param ip {@link InetAddress} to "coerce" 889 * @return {@link Inet4Address} represented "coerced" address 890 * @since 7.0 891 */ 892 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 893 if (ip instanceof Inet4Address) { 894 return (Inet4Address) ip; 895 } 896 897 // Special cases: 898 byte[] bytes = ip.getAddress(); 899 boolean leadingBytesOfZero = true; 900 for (int i = 0; i < 15; ++i) { 901 if (bytes[i] != 0) { 902 leadingBytesOfZero = false; 903 break; 904 } 905 } 906 if (leadingBytesOfZero && (bytes[15] == 1)) { 907 return LOOPBACK4; // ::1 908 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 909 return ANY4; // ::0 910 } 911 912 Inet6Address ip6 = (Inet6Address) ip; 913 long addressAsLong = 0; 914 if (hasEmbeddedIPv4ClientAddress(ip6)) { 915 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 916 } else { 917 // Just extract the high 64 bits (assuming the rest is user-modifiable). 918 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 919 } 920 921 // Many strategies for hashing are possible. This might suffice for now. 922 int coercedHash = Hashing.murmur3_32().hashLong(addressAsLong).asInt(); 923 924 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 925 coercedHash |= 0xe0000000; 926 927 // Fixup to avoid some "illegal" values. Currently the only potential 928 // illegal value is 255.255.255.255. 929 if (coercedHash == 0xffffffff) { 930 coercedHash = 0xfffffffe; 931 } 932 933 return getInet4Address(Ints.toByteArray(coercedHash)); 934 } 935 936 /** 937 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 938 * an IPv4 address or not. 939 * 940 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 941 * 942 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 943 * can therefore be converted safely to integers (for whatever purpose) this function can be used 944 * to handle IPv6 addresses as well until the application is suitably fixed. 945 * 946 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 947 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 948 * cannot be used as real addresses for the purposes of network communication. 949 * 950 * @param ip {@link InetAddress} to convert 951 * @return {@code int}, "coerced" if ip is not an IPv4 address 952 * @since 7.0 953 */ 954 public static int coerceToInteger(InetAddress ip) { 955 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 956 } 957 958 /** 959 * Returns a BigInteger representing the address. 960 * 961 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 962 * 963 * @param address {@link InetAddress} to convert 964 * @return {@code BigInteger} representation of the address 965 * @since 28.2 966 */ 967 public static BigInteger toBigInteger(InetAddress address) { 968 return new BigInteger(1, address.getAddress()); 969 } 970 971 /** 972 * Returns an Inet4Address having the integer value specified by the argument. 973 * 974 * @param address {@code int}, the 32bit integer address to be converted 975 * @return {@link Inet4Address} equivalent of the argument 976 */ 977 public static Inet4Address fromInteger(int address) { 978 return getInet4Address(Ints.toByteArray(address)); 979 } 980 981 /** 982 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 983 * 984 * @param address BigInteger representing the IPv4 address 985 * @return Inet4Address representation of the given BigInteger 986 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 987 * @since 28.2 988 */ 989 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 990 return (Inet4Address) fromBigInteger(address, false); 991 } 992 /** 993 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 994 * 995 * @param address BigInteger representing the IPv6 address 996 * @return Inet6Address representation of the given BigInteger 997 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 998 * @since 28.2 999 */ 1000 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 1001 return (Inet6Address) fromBigInteger(address, true); 1002 } 1003 1004 /** 1005 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 1006 * constrainted to 32 bits, otherwise it is constrained to 128 bits. 1007 * 1008 * @param address the address represented as a big integer 1009 * @param isIpv6 whether the created address should be IPv4 or IPv6 1010 * @return the BigInteger converted to an address 1011 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 1012 * or IPv6 respectively 1013 */ 1014 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 1015 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 1016 1017 int numBytes = isIpv6 ? 16 : 4; 1018 1019 byte[] addressBytes = address.toByteArray(); 1020 byte[] targetCopyArray = new byte[numBytes]; 1021 1022 int srcPos = Math.max(0, addressBytes.length - numBytes); 1023 int copyLength = addressBytes.length - srcPos; 1024 int destPos = numBytes - copyLength; 1025 1026 // Check the extra bytes in the BigInteger are all zero. 1027 for (int i = 0; i < srcPos; i++) { 1028 if (addressBytes[i] != 0x00) { 1029 throw formatIllegalArgumentException( 1030 "BigInteger cannot be converted to InetAddress because it has more than %d" 1031 + " bytes: %s", 1032 numBytes, address); 1033 } 1034 } 1035 1036 // Copy the bytes into the least significant positions. 1037 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 1038 1039 try { 1040 return InetAddress.getByAddress(targetCopyArray); 1041 } catch (UnknownHostException impossible) { 1042 throw new AssertionError(impossible); 1043 } 1044 } 1045 1046 /** 1047 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 1048 * InetAddress#getByAddress} expects). 1049 * 1050 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1051 * 1052 * @param addr the raw IP address in little-endian byte order 1053 * @return an InetAddress object created from the raw IP address 1054 * @throws UnknownHostException if IP address is of illegal length 1055 */ 1056 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1057 byte[] reversed = new byte[addr.length]; 1058 for (int i = 0; i < addr.length; i++) { 1059 reversed[i] = addr[addr.length - i - 1]; 1060 } 1061 return InetAddress.getByAddress(reversed); 1062 } 1063 1064 /** 1065 * Returns a new InetAddress that is one less than the passed in address. This method works for 1066 * both IPv4 and IPv6 addresses. 1067 * 1068 * @param address the InetAddress to decrement 1069 * @return a new InetAddress that is one less than the passed in address 1070 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1071 * @since 18.0 1072 */ 1073 public static InetAddress decrement(InetAddress address) { 1074 byte[] addr = address.getAddress(); 1075 int i = addr.length - 1; 1076 while (i >= 0 && addr[i] == (byte) 0x00) { 1077 addr[i] = (byte) 0xff; 1078 i--; 1079 } 1080 1081 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1082 1083 addr[i]--; 1084 return bytesToInetAddress(addr); 1085 } 1086 1087 /** 1088 * Returns a new InetAddress that is one more than the passed in address. This method works for 1089 * both IPv4 and IPv6 addresses. 1090 * 1091 * @param address the InetAddress to increment 1092 * @return a new InetAddress that is one more than the passed in address 1093 * @throws IllegalArgumentException if InetAddress is at the end of its range 1094 * @since 10.0 1095 */ 1096 public static InetAddress increment(InetAddress address) { 1097 byte[] addr = address.getAddress(); 1098 int i = addr.length - 1; 1099 while (i >= 0 && addr[i] == (byte) 0xff) { 1100 addr[i] = 0; 1101 i--; 1102 } 1103 1104 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1105 1106 addr[i]++; 1107 return bytesToInetAddress(addr); 1108 } 1109 1110 /** 1111 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1112 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1113 * 1114 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1115 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1116 * @since 10.0 1117 */ 1118 public static boolean isMaximum(InetAddress address) { 1119 byte[] addr = address.getAddress(); 1120 for (byte b : addr) { 1121 if (b != (byte) 0xff) { 1122 return false; 1123 } 1124 } 1125 return true; 1126 } 1127 1128 private static IllegalArgumentException formatIllegalArgumentException( 1129 String format, Object... args) { 1130 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1131 } 1132 }