Coverage Summary for Class: UnsignedBytes (com.google.common.primitives)

Class Method, % Line, %
UnsignedBytes 0% (0/19) 0% (0/61)
UnsignedBytes$LexicographicalComparatorHolder 0% (0/3) 0% (0/10)
UnsignedBytes$LexicographicalComparatorHolder$PureJavaComparator 0% (0/3) 0% (0/9)
UnsignedBytes$LexicographicalComparatorHolder$UnsafeComparator 0% (0/4) 0% (0/30)
UnsignedBytes$LexicographicalComparatorHolder$UnsafeComparator$1 0% (0/2) 0% (0/8)
Total 0% (0/31) 0% (0/118)


1 /* 2  * Copyright (C) 2009 The Guava Authors 3  * 4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5  * in compliance with the License. You may obtain a copy of the License at 6  * 7  * http://www.apache.org/licenses/LICENSE-2.0 8  * 9  * Unless required by applicable law or agreed to in writing, software distributed under the License 10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11  * or implied. See the License for the specific language governing permissions and limitations under 12  * the License. 13  */ 14  15 package com.google.common.primitives; 16  17 import static com.google.common.base.Preconditions.checkArgument; 18 import static com.google.common.base.Preconditions.checkNotNull; 19 import static com.google.common.base.Preconditions.checkPositionIndexes; 20 import static java.util.Objects.requireNonNull; 21  22 import com.google.common.annotations.Beta; 23 import com.google.common.annotations.GwtIncompatible; 24 import com.google.common.annotations.VisibleForTesting; 25 import com.google.errorprone.annotations.CanIgnoreReturnValue; 26 import java.nio.ByteOrder; 27 import java.util.Arrays; 28 import java.util.Comparator; 29 import sun.misc.Unsafe; 30  31 /** 32  * Static utility methods pertaining to {@code byte} primitives that interpret values as 33  * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code 34  * 256 + b}). The corresponding methods that treat the values as signed are found in {@link 35  * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}. 36  * 37  * <p>See the Guava User Guide article on <a 38  * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 39  * 40  * @author Kevin Bourrillion 41  * @author Martin Buchholz 42  * @author Hiroshi Yamauchi 43  * @author Louis Wasserman 44  * @since 1.0 45  */ 46 @GwtIncompatible 47 @ElementTypesAreNonnullByDefault 48 public final class UnsignedBytes { 49  private UnsignedBytes() {} 50  51  /** 52  * The largest power of two that can be represented as an unsigned {@code byte}. 53  * 54  * @since 10.0 55  */ 56  public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 57  58  /** 59  * The largest value that fits into an unsigned byte. 60  * 61  * @since 13.0 62  */ 63  public static final byte MAX_VALUE = (byte) 0xFF; 64  65  private static final int UNSIGNED_MASK = 0xFF; 66  67  /** 68  * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns 69  * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. 70  * 71  * <p><b>Java 8 users:</b> use {@link Byte#toUnsignedInt(byte)} instead. 72  * 73  * @since 6.0 74  */ 75  public static int toInt(byte value) { 76  return value & UNSIGNED_MASK; 77  } 78  79  /** 80  * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if 81  * possible. 82  * 83  * @param value a value between 0 and 255 inclusive 84  * @return the {@code byte} value that, when treated as unsigned, equals {@code value} 85  * @throws IllegalArgumentException if {@code value} is negative or greater than 255 86  */ 87  @CanIgnoreReturnValue 88  public static byte checkedCast(long value) { 89  checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 90  return (byte) value; 91  } 92  93  /** 94  * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code 95  * value}. 96  * 97  * @param value any {@code long} value 98  * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and 99  * {@code value} cast to {@code byte} otherwise 100  */ 101  public static byte saturatedCast(long value) { 102  if (value > toInt(MAX_VALUE)) { 103  return MAX_VALUE; // -1 104  } 105  if (value < 0) { 106  return (byte) 0; 107  } 108  return (byte) value; 109  } 110  111  /** 112  * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and 113  * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} 114  * because it is seen as having the value of positive {@code 129}. 115  * 116  * @param a the first {@code byte} to compare 117  * @param b the second {@code byte} to compare 118  * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 119  * greater than {@code b}; or zero if they are equal 120  */ 121  public static int compare(byte a, byte b) { 122  return toInt(a) - toInt(b); 123  } 124  125  /** 126  * Returns the least value present in {@code array}, treating values as unsigned. 127  * 128  * @param array a <i>nonempty</i> array of {@code byte} values 129  * @return the value present in {@code array} that is less than or equal to every other value in 130  * the array according to {@link #compare} 131  * @throws IllegalArgumentException if {@code array} is empty 132  */ 133  public static byte min(byte... array) { 134  checkArgument(array.length > 0); 135  int min = toInt(array[0]); 136  for (int i = 1; i < array.length; i++) { 137  int next = toInt(array[i]); 138  if (next < min) { 139  min = next; 140  } 141  } 142  return (byte) min; 143  } 144  145  /** 146  * Returns the greatest value present in {@code array}, treating values as unsigned. 147  * 148  * @param array a <i>nonempty</i> array of {@code byte} values 149  * @return the value present in {@code array} that is greater than or equal to every other value 150  * in the array according to {@link #compare} 151  * @throws IllegalArgumentException if {@code array} is empty 152  */ 153  public static byte max(byte... array) { 154  checkArgument(array.length > 0); 155  int max = toInt(array[0]); 156  for (int i = 1; i < array.length; i++) { 157  int next = toInt(array[i]); 158  if (next > max) { 159  max = next; 160  } 161  } 162  return (byte) max; 163  } 164  165  /** 166  * Returns a string representation of x, where x is treated as unsigned. 167  * 168  * @since 13.0 169  */ 170  @Beta 171  public static String toString(byte x) { 172  return toString(x, 10); 173  } 174  175  /** 176  * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as 177  * unsigned. 178  * 179  * @param x the value to convert to a string. 180  * @param radix the radix to use while working with {@code x} 181  * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 182  * and {@link Character#MAX_RADIX}. 183  * @since 13.0 184  */ 185  @Beta 186  public static String toString(byte x, int radix) { 187  checkArgument( 188  radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 189  "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 190  radix); 191  // Benchmarks indicate this is probably not worth optimizing. 192  return Integer.toString(toInt(x), radix); 193  } 194  195  /** 196  * Returns the unsigned {@code byte} value represented by the given decimal string. 197  * 198  * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 199  * value 200  * @throws NullPointerException if {@code string} is null (in contrast to {@link 201  * Byte#parseByte(String)}) 202  * @since 13.0 203  */ 204  @Beta 205  @CanIgnoreReturnValue 206  public static byte parseUnsignedByte(String string) { 207  return parseUnsignedByte(string, 10); 208  } 209  210  /** 211  * Returns the unsigned {@code byte} value represented by a string with the given radix. 212  * 213  * @param string the string containing the unsigned {@code byte} representation to be parsed. 214  * @param radix the radix to use while parsing {@code string} 215  * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with 216  * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link 217  * Character#MAX_RADIX}. 218  * @throws NullPointerException if {@code string} is null (in contrast to {@link 219  * Byte#parseByte(String)}) 220  * @since 13.0 221  */ 222  @Beta 223  @CanIgnoreReturnValue 224  public static byte parseUnsignedByte(String string, int radix) { 225  int parse = Integer.parseInt(checkNotNull(string), radix); 226  // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 227  if (parse >> Byte.SIZE == 0) { 228  return (byte) parse; 229  } else { 230  throw new NumberFormatException("out of range: " + parse); 231  } 232  } 233  234  /** 235  * Returns a string containing the supplied {@code byte} values separated by {@code separator}. 236  * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code 237  * "1:2:255"}. 238  * 239  * @param separator the text that should appear between consecutive values in the resulting string 240  * (but not at the start or end) 241  * @param array an array of {@code byte} values, possibly empty 242  */ 243  public static String join(String separator, byte... array) { 244  checkNotNull(separator); 245  if (array.length == 0) { 246  return ""; 247  } 248  249  // For pre-sizing a builder, just get the right order of magnitude 250  StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 251  builder.append(toInt(array[0])); 252  for (int i = 1; i < array.length; i++) { 253  builder.append(separator).append(toString(array[i])); 254  } 255  return builder.toString(); 256  } 257  258  /** 259  * Returns a comparator that compares two {@code byte} arrays <a 260  * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 261  * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common 262  * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 263  * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as 264  * unsigned. 265  * 266  * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 267  * support only identity equality), but it is consistent with {@link 268  * java.util.Arrays#equals(byte[], byte[])}. 269  * 270  * @since 2.0 271  */ 272  public static Comparator<byte[]> lexicographicalComparator() { 273  return LexicographicalComparatorHolder.BEST_COMPARATOR; 274  } 275  276  @VisibleForTesting 277  static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 278  return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 279  } 280  281  /** 282  * Provides a lexicographical comparator implementation; either a Java implementation or a faster 283  * implementation based on {@link Unsafe}. 284  * 285  * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't 286  * available. 287  */ 288  @VisibleForTesting 289  static class LexicographicalComparatorHolder { 290  static final String UNSAFE_COMPARATOR_NAME = 291  LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 292  293  static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 294  295  @VisibleForTesting 296  enum UnsafeComparator implements Comparator<byte[]> { 297  INSTANCE; 298  299  static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 300  301  /* 302  * The following static final fields exist for performance reasons. 303  * 304  * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the 305  * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static 306  * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the 307  * non-final fields need to be reloaded inside the loop. 308  * 309  * And, no, defining (final or not) local variables out of the loop still isn't as good 310  * because the null check on the theUnsafe object remains inside the loop and 311  * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. 312  * 313  * The compiler can treat static final fields as compile-time constants and can constant-fold 314  * them while (final or not) local variables are run time values. 315  */ 316  317  static final Unsafe theUnsafe = getUnsafe(); 318  319  /** The offset to the first element in a byte array. */ 320  static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 321  322  static { 323  // fall back to the safer pure java implementation unless we're in 324  // a 64-bit JVM with an 8-byte aligned field offset. 325  if (!("64".equals(System.getProperty("sun.arch.data.model")) 326  && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 327  // sanity check - this should never fail 328  && theUnsafe.arrayIndexScale(byte[].class) == 1)) { 329  throw new Error(); // force fallback to PureJavaComparator 330  } 331  } 332  333  /** 334  * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple 335  * call to Unsafe.getUnsafe when integrating into a jdk. 336  * 337  * @return a sun.misc.Unsafe 338  */ 339  private static sun.misc.Unsafe getUnsafe() { 340  try { 341  return sun.misc.Unsafe.getUnsafe(); 342  } catch (SecurityException e) { 343  // that's okay; try reflection instead 344  } 345  try { 346  return java.security.AccessController.doPrivileged( 347  new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { 348  @Override 349  public sun.misc.Unsafe run() throws Exception { 350  Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; 351  for (java.lang.reflect.Field f : k.getDeclaredFields()) { 352  f.setAccessible(true); 353  Object x = f.get(null); 354  if (k.isInstance(x)) { 355  return k.cast(x); 356  } 357  } 358  throw new NoSuchFieldError("the Unsafe"); 359  } 360  }); 361  } catch (java.security.PrivilegedActionException e) { 362  throw new RuntimeException("Could not initialize intrinsics", e.getCause()); 363  } 364  } 365  366  @Override 367  public int compare(byte[] left, byte[] right) { 368  final int stride = 8; 369  int minLength = Math.min(left.length, right.length); 370  int strideLimit = minLength & ~(stride - 1); 371  int i; 372  373  /* 374  * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower 375  * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. 376  */ 377  for (i = 0; i < strideLimit; i += stride) { 378  long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 379  long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 380  if (lw != rw) { 381  if (BIG_ENDIAN) { 382  return UnsignedLongs.compare(lw, rw); 383  } 384  385  /* 386  * We want to compare only the first index where left[index] != right[index]. This 387  * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are 388  * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant 389  * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get 390  * that least significant nonzero byte. 391  */ 392  int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 393  return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); 394  } 395  } 396  397  // The epilogue to cover the last (minLength % stride) elements. 398  for (; i < minLength; i++) { 399  int result = UnsignedBytes.compare(left[i], right[i]); 400  if (result != 0) { 401  return result; 402  } 403  } 404  return left.length - right.length; 405  } 406  407  @Override 408  public String toString() { 409  return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; 410  } 411  } 412  413  enum PureJavaComparator implements Comparator<byte[]> { 414  INSTANCE; 415  416  @Override 417  public int compare(byte[] left, byte[] right) { 418  int minLength = Math.min(left.length, right.length); 419  for (int i = 0; i < minLength; i++) { 420  int result = UnsignedBytes.compare(left[i], right[i]); 421  if (result != 0) { 422  return result; 423  } 424  } 425  return left.length - right.length; 426  } 427  428  @Override 429  public String toString() { 430  return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; 431  } 432  } 433  434  /** 435  * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable 436  * to do so. 437  */ 438  static Comparator<byte[]> getBestComparator() { 439  try { 440  Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 441  442  // requireNonNull is safe because the class is an enum. 443  Object[] constants = requireNonNull(theClass.getEnumConstants()); 444  445  // yes, UnsafeComparator does implement Comparator<byte[]> 446  @SuppressWarnings("unchecked") 447  Comparator<byte[]> comparator = (Comparator<byte[]>) constants[0]; 448  return comparator; 449  } catch (Throwable t) { // ensure we really catch *everything* 450  return lexicographicalComparatorJavaImpl(); 451  } 452  } 453  } 454  455  private static byte flip(byte b) { 456  return (byte) (b ^ 0x80); 457  } 458  459  /** 460  * Sorts the array, treating its elements as unsigned bytes. 461  * 462  * @since 23.1 463  */ 464  public static void sort(byte[] array) { 465  checkNotNull(array); 466  sort(array, 0, array.length); 467  } 468  469  /** 470  * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its 471  * elements as unsigned bytes. 472  * 473  * @since 23.1 474  */ 475  public static void sort(byte[] array, int fromIndex, int toIndex) { 476  checkNotNull(array); 477  checkPositionIndexes(fromIndex, toIndex, array.length); 478  for (int i = fromIndex; i < toIndex; i++) { 479  array[i] = flip(array[i]); 480  } 481  Arrays.sort(array, fromIndex, toIndex); 482  for (int i = fromIndex; i < toIndex; i++) { 483  array[i] = flip(array[i]); 484  } 485  } 486  487  /** 488  * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit 489  * integers. 490  * 491  * @since 23.1 492  */ 493  public static void sortDescending(byte[] array) { 494  checkNotNull(array); 495  sortDescending(array, 0, array.length); 496  } 497  498  /** 499  * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 500  * exclusive in descending order, interpreting them as unsigned 8-bit integers. 501  * 502  * @since 23.1 503  */ 504  public static void sortDescending(byte[] array, int fromIndex, int toIndex) { 505  checkNotNull(array); 506  checkPositionIndexes(fromIndex, toIndex, array.length); 507  for (int i = fromIndex; i < toIndex; i++) { 508  array[i] ^= Byte.MAX_VALUE; 509  } 510  Arrays.sort(array, fromIndex, toIndex); 511  for (int i = fromIndex; i < toIndex; i++) { 512  array[i] ^= Byte.MAX_VALUE; 513  } 514  } 515 }