Coverage Summary for Class: RateLimiter (com.google.common.util.concurrent)

Class Method, % Line, %
RateLimiter 0% (0/22) 0% (0/57)
RateLimiter$SleepingStopwatch 0% (0/2) 0% (0/2)
RateLimiter$SleepingStopwatch$1 0% (0/3) 0% (0/5)
Total 0% (0/27) 0% (0/64)


1 /* 2  * Copyright (C) 2012 The Guava Authors 3  * 4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5  * in compliance with the License. You may obtain a copy of the License at 6  * 7  * http://www.apache.org/licenses/LICENSE-2.0 8  * 9  * Unless required by applicable law or agreed to in writing, software distributed under the License 10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11  * or implied. See the License for the specific language governing permissions and limitations under 12  * the License. 13  */ 14  15 package com.google.common.util.concurrent; 16  17 import static com.google.common.base.Preconditions.checkArgument; 18 import static com.google.common.base.Preconditions.checkNotNull; 19 import static com.google.common.util.concurrent.Internal.toNanosSaturated; 20 import static java.lang.Math.max; 21 import static java.util.concurrent.TimeUnit.MICROSECONDS; 22 import static java.util.concurrent.TimeUnit.SECONDS; 23  24 import com.google.common.annotations.Beta; 25 import com.google.common.annotations.GwtIncompatible; 26 import com.google.common.annotations.VisibleForTesting; 27 import com.google.common.base.Stopwatch; 28 import com.google.common.util.concurrent.SmoothRateLimiter.SmoothBursty; 29 import com.google.common.util.concurrent.SmoothRateLimiter.SmoothWarmingUp; 30 import com.google.errorprone.annotations.CanIgnoreReturnValue; 31 import java.time.Duration; 32 import java.util.Locale; 33 import java.util.concurrent.TimeUnit; 34 import javax.annotation.CheckForNull; 35  36 /** 37  * A rate limiter. Conceptually, a rate limiter distributes permits at a configurable rate. Each 38  * {@link #acquire()} blocks if necessary until a permit is available, and then takes it. Once 39  * acquired, permits need not be released. 40  * 41  * <p>{@code RateLimiter} is safe for concurrent use: It will restrict the total rate of calls from 42  * all threads. Note, however, that it does not guarantee fairness. 43  * 44  * <p>Rate limiters are often used to restrict the rate at which some physical or logical resource 45  * is accessed. This is in contrast to {@link java.util.concurrent.Semaphore} which restricts the 46  * number of concurrent accesses instead of the rate (note though that concurrency and rate are 47  * closely related, e.g. see <a href="http://en.wikipedia.org/wiki/Little%27s_law">Little's 48  * Law</a>). 49  * 50  * <p>A {@code RateLimiter} is defined primarily by the rate at which permits are issued. Absent 51  * additional configuration, permits will be distributed at a fixed rate, defined in terms of 52  * permits per second. Permits will be distributed smoothly, with the delay between individual 53  * permits being adjusted to ensure that the configured rate is maintained. 54  * 55  * <p>It is possible to configure a {@code RateLimiter} to have a warmup period during which time 56  * the permits issued each second steadily increases until it hits the stable rate. 57  * 58  * <p>As an example, imagine that we have a list of tasks to execute, but we don't want to submit 59  * more than 2 per second: 60  * 61  * <pre>{@code 62  * final RateLimiter rateLimiter = RateLimiter.create(2.0); // rate is "2 permits per second" 63  * void submitTasks(List<Runnable> tasks, Executor executor) { 64  * for (Runnable task : tasks) { 65  * rateLimiter.acquire(); // may wait 66  * executor.execute(task); 67  * } 68  * } 69  * }</pre> 70  * 71  * <p>As another example, imagine that we produce a stream of data, and we want to cap it at 5kb per 72  * second. This could be accomplished by requiring a permit per byte, and specifying a rate of 5000 73  * permits per second: 74  * 75  * <pre>{@code 76  * final RateLimiter rateLimiter = RateLimiter.create(5000.0); // rate = 5000 permits per second 77  * void submitPacket(byte[] packet) { 78  * rateLimiter.acquire(packet.length); 79  * networkService.send(packet); 80  * } 81  * }</pre> 82  * 83  * <p>It is important to note that the number of permits requested <i>never</i> affects the 84  * throttling of the request itself (an invocation to {@code acquire(1)} and an invocation to {@code 85  * acquire(1000)} will result in exactly the same throttling, if any), but it affects the throttling 86  * of the <i>next</i> request. I.e., if an expensive task arrives at an idle RateLimiter, it will be 87  * granted immediately, but it is the <i>next</i> request that will experience extra throttling, 88  * thus paying for the cost of the expensive task. 89  * 90  * @author Dimitris Andreou 91  * @since 13.0 92  */ 93 // TODO(user): switch to nano precision. A natural unit of cost is "bytes", and a micro precision 94 // would mean a maximum rate of "1MB/s", which might be small in some cases. 95 @Beta 96 @GwtIncompatible 97 @ElementTypesAreNonnullByDefault 98 public abstract class RateLimiter { 99  /** 100  * Creates a {@code RateLimiter} with the specified stable throughput, given as "permits per 101  * second" (commonly referred to as <i>QPS</i>, queries per second). 102  * 103  * <p>The returned {@code RateLimiter} ensures that on average no more than {@code 104  * permitsPerSecond} are issued during any given second, with sustained requests being smoothly 105  * spread over each second. When the incoming request rate exceeds {@code permitsPerSecond} the 106  * rate limiter will release one permit every {@code (1.0 / permitsPerSecond)} seconds. When the 107  * rate limiter is unused, bursts of up to {@code permitsPerSecond} permits will be allowed, with 108  * subsequent requests being smoothly limited at the stable rate of {@code permitsPerSecond}. 109  * 110  * @param permitsPerSecond the rate of the returned {@code RateLimiter}, measured in how many 111  * permits become available per second 112  * @throws IllegalArgumentException if {@code permitsPerSecond} is negative or zero 113  */ 114  // TODO(user): "This is equivalent to 115  // {@code createWithCapacity(permitsPerSecond, 1, TimeUnit.SECONDS)}". 116  public static RateLimiter create(double permitsPerSecond) { 117  /* 118  * The default RateLimiter configuration can save the unused permits of up to one second. This 119  * is to avoid unnecessary stalls in situations like this: A RateLimiter of 1qps, and 4 threads, 120  * all calling acquire() at these moments: 121  * 122  * T0 at 0 seconds 123  * T1 at 1.05 seconds 124  * T2 at 2 seconds 125  * T3 at 3 seconds 126  * 127  * Due to the slight delay of T1, T2 would have to sleep till 2.05 seconds, and T3 would also 128  * have to sleep till 3.05 seconds. 129  */ 130  return create(permitsPerSecond, SleepingStopwatch.createFromSystemTimer()); 131  } 132  133  @VisibleForTesting 134  static RateLimiter create(double permitsPerSecond, SleepingStopwatch stopwatch) { 135  RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0 /* maxBurstSeconds */); 136  rateLimiter.setRate(permitsPerSecond); 137  return rateLimiter; 138  } 139  140  /** 141  * Creates a {@code RateLimiter} with the specified stable throughput, given as "permits per 142  * second" (commonly referred to as <i>QPS</i>, queries per second), and a <i>warmup period</i>, 143  * during which the {@code RateLimiter} smoothly ramps up its rate, until it reaches its maximum 144  * rate at the end of the period (as long as there are enough requests to saturate it). Similarly, 145  * if the {@code RateLimiter} is left <i>unused</i> for a duration of {@code warmupPeriod}, it 146  * will gradually return to its "cold" state, i.e. it will go through the same warming up process 147  * as when it was first created. 148  * 149  * <p>The returned {@code RateLimiter} is intended for cases where the resource that actually 150  * fulfills the requests (e.g., a remote server) needs "warmup" time, rather than being 151  * immediately accessed at the stable (maximum) rate. 152  * 153  * <p>The returned {@code RateLimiter} starts in a "cold" state (i.e. the warmup period will 154  * follow), and if it is left unused for long enough, it will return to that state. 155  * 156  * @param permitsPerSecond the rate of the returned {@code RateLimiter}, measured in how many 157  * permits become available per second 158  * @param warmupPeriod the duration of the period where the {@code RateLimiter} ramps up its rate, 159  * before reaching its stable (maximum) rate 160  * @throws IllegalArgumentException if {@code permitsPerSecond} is negative or zero or {@code 161  * warmupPeriod} is negative 162  * @since 28.0 163  */ 164  public static RateLimiter create(double permitsPerSecond, Duration warmupPeriod) { 165  return create(permitsPerSecond, toNanosSaturated(warmupPeriod), TimeUnit.NANOSECONDS); 166  } 167  168  /** 169  * Creates a {@code RateLimiter} with the specified stable throughput, given as "permits per 170  * second" (commonly referred to as <i>QPS</i>, queries per second), and a <i>warmup period</i>, 171  * during which the {@code RateLimiter} smoothly ramps up its rate, until it reaches its maximum 172  * rate at the end of the period (as long as there are enough requests to saturate it). Similarly, 173  * if the {@code RateLimiter} is left <i>unused</i> for a duration of {@code warmupPeriod}, it 174  * will gradually return to its "cold" state, i.e. it will go through the same warming up process 175  * as when it was first created. 176  * 177  * <p>The returned {@code RateLimiter} is intended for cases where the resource that actually 178  * fulfills the requests (e.g., a remote server) needs "warmup" time, rather than being 179  * immediately accessed at the stable (maximum) rate. 180  * 181  * <p>The returned {@code RateLimiter} starts in a "cold" state (i.e. the warmup period will 182  * follow), and if it is left unused for long enough, it will return to that state. 183  * 184  * @param permitsPerSecond the rate of the returned {@code RateLimiter}, measured in how many 185  * permits become available per second 186  * @param warmupPeriod the duration of the period where the {@code RateLimiter} ramps up its rate, 187  * before reaching its stable (maximum) rate 188  * @param unit the time unit of the warmupPeriod argument 189  * @throws IllegalArgumentException if {@code permitsPerSecond} is negative or zero or {@code 190  * warmupPeriod} is negative 191  */ 192  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 193  public static RateLimiter create(double permitsPerSecond, long warmupPeriod, TimeUnit unit) { 194  checkArgument(warmupPeriod >= 0, "warmupPeriod must not be negative: %s", warmupPeriod); 195  return create( 196  permitsPerSecond, warmupPeriod, unit, 3.0, SleepingStopwatch.createFromSystemTimer()); 197  } 198  199  @VisibleForTesting 200  static RateLimiter create( 201  double permitsPerSecond, 202  long warmupPeriod, 203  TimeUnit unit, 204  double coldFactor, 205  SleepingStopwatch stopwatch) { 206  RateLimiter rateLimiter = new SmoothWarmingUp(stopwatch, warmupPeriod, unit, coldFactor); 207  rateLimiter.setRate(permitsPerSecond); 208  return rateLimiter; 209  } 210  211  /** 212  * The underlying timer; used both to measure elapsed time and sleep as necessary. A separate 213  * object to facilitate testing. 214  */ 215  private final SleepingStopwatch stopwatch; 216  217  // Can't be initialized in the constructor because mocks don't call the constructor. 218  @CheckForNull private volatile Object mutexDoNotUseDirectly; 219  220  private Object mutex() { 221  Object mutex = mutexDoNotUseDirectly; 222  if (mutex == null) { 223  synchronized (this) { 224  mutex = mutexDoNotUseDirectly; 225  if (mutex == null) { 226  mutexDoNotUseDirectly = mutex = new Object(); 227  } 228  } 229  } 230  return mutex; 231  } 232  233  RateLimiter(SleepingStopwatch stopwatch) { 234  this.stopwatch = checkNotNull(stopwatch); 235  } 236  237  /** 238  * Updates the stable rate of this {@code RateLimiter}, that is, the {@code permitsPerSecond} 239  * argument provided in the factory method that constructed the {@code RateLimiter}. Currently 240  * throttled threads will <b>not</b> be awakened as a result of this invocation, thus they do not 241  * observe the new rate; only subsequent requests will. 242  * 243  * <p>Note though that, since each request repays (by waiting, if necessary) the cost of the 244  * <i>previous</i> request, this means that the very next request after an invocation to {@code 245  * setRate} will not be affected by the new rate; it will pay the cost of the previous request, 246  * which is in terms of the previous rate. 247  * 248  * <p>The behavior of the {@code RateLimiter} is not modified in any other way, e.g. if the {@code 249  * RateLimiter} was configured with a warmup period of 20 seconds, it still has a warmup period of 250  * 20 seconds after this method invocation. 251  * 252  * @param permitsPerSecond the new stable rate of this {@code RateLimiter} 253  * @throws IllegalArgumentException if {@code permitsPerSecond} is negative or zero 254  */ 255  public final void setRate(double permitsPerSecond) { 256  checkArgument( 257  permitsPerSecond > 0.0 && !Double.isNaN(permitsPerSecond), "rate must be positive"); 258  synchronized (mutex()) { 259  doSetRate(permitsPerSecond, stopwatch.readMicros()); 260  } 261  } 262  263  abstract void doSetRate(double permitsPerSecond, long nowMicros); 264  265  /** 266  * Returns the stable rate (as {@code permits per seconds}) with which this {@code RateLimiter} is 267  * configured with. The initial value of this is the same as the {@code permitsPerSecond} argument 268  * passed in the factory method that produced this {@code RateLimiter}, and it is only updated 269  * after invocations to {@linkplain #setRate}. 270  */ 271  public final double getRate() { 272  synchronized (mutex()) { 273  return doGetRate(); 274  } 275  } 276  277  abstract double doGetRate(); 278  279  /** 280  * Acquires a single permit from this {@code RateLimiter}, blocking until the request can be 281  * granted. Tells the amount of time slept, if any. 282  * 283  * <p>This method is equivalent to {@code acquire(1)}. 284  * 285  * @return time spent sleeping to enforce rate, in seconds; 0.0 if not rate-limited 286  * @since 16.0 (present in 13.0 with {@code void} return type}) 287  */ 288  @CanIgnoreReturnValue 289  public double acquire() { 290  return acquire(1); 291  } 292  293  /** 294  * Acquires the given number of permits from this {@code RateLimiter}, blocking until the request 295  * can be granted. Tells the amount of time slept, if any. 296  * 297  * @param permits the number of permits to acquire 298  * @return time spent sleeping to enforce rate, in seconds; 0.0 if not rate-limited 299  * @throws IllegalArgumentException if the requested number of permits is negative or zero 300  * @since 16.0 (present in 13.0 with {@code void} return type}) 301  */ 302  @CanIgnoreReturnValue 303  public double acquire(int permits) { 304  long microsToWait = reserve(permits); 305  stopwatch.sleepMicrosUninterruptibly(microsToWait); 306  return 1.0 * microsToWait / SECONDS.toMicros(1L); 307  } 308  309  /** 310  * Reserves the given number of permits from this {@code RateLimiter} for future use, returning 311  * the number of microseconds until the reservation can be consumed. 312  * 313  * @return time in microseconds to wait until the resource can be acquired, never negative 314  */ 315  final long reserve(int permits) { 316  checkPermits(permits); 317  synchronized (mutex()) { 318  return reserveAndGetWaitLength(permits, stopwatch.readMicros()); 319  } 320  } 321  322  /** 323  * Acquires a permit from this {@code RateLimiter} if it can be obtained without exceeding the 324  * specified {@code timeout}, or returns {@code false} immediately (without waiting) if the permit 325  * would not have been granted before the timeout expired. 326  * 327  * <p>This method is equivalent to {@code tryAcquire(1, timeout)}. 328  * 329  * @param timeout the maximum time to wait for the permit. Negative values are treated as zero. 330  * @return {@code true} if the permit was acquired, {@code false} otherwise 331  * @throws IllegalArgumentException if the requested number of permits is negative or zero 332  * @since 28.0 333  */ 334  public boolean tryAcquire(Duration timeout) { 335  return tryAcquire(1, toNanosSaturated(timeout), TimeUnit.NANOSECONDS); 336  } 337  338  /** 339  * Acquires a permit from this {@code RateLimiter} if it can be obtained without exceeding the 340  * specified {@code timeout}, or returns {@code false} immediately (without waiting) if the permit 341  * would not have been granted before the timeout expired. 342  * 343  * <p>This method is equivalent to {@code tryAcquire(1, timeout, unit)}. 344  * 345  * @param timeout the maximum time to wait for the permit. Negative values are treated as zero. 346  * @param unit the time unit of the timeout argument 347  * @return {@code true} if the permit was acquired, {@code false} otherwise 348  * @throws IllegalArgumentException if the requested number of permits is negative or zero 349  */ 350  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 351  public boolean tryAcquire(long timeout, TimeUnit unit) { 352  return tryAcquire(1, timeout, unit); 353  } 354  355  /** 356  * Acquires permits from this {@link RateLimiter} if it can be acquired immediately without delay. 357  * 358  * <p>This method is equivalent to {@code tryAcquire(permits, 0, anyUnit)}. 359  * 360  * @param permits the number of permits to acquire 361  * @return {@code true} if the permits were acquired, {@code false} otherwise 362  * @throws IllegalArgumentException if the requested number of permits is negative or zero 363  * @since 14.0 364  */ 365  public boolean tryAcquire(int permits) { 366  return tryAcquire(permits, 0, MICROSECONDS); 367  } 368  369  /** 370  * Acquires a permit from this {@link RateLimiter} if it can be acquired immediately without 371  * delay. 372  * 373  * <p>This method is equivalent to {@code tryAcquire(1)}. 374  * 375  * @return {@code true} if the permit was acquired, {@code false} otherwise 376  * @since 14.0 377  */ 378  public boolean tryAcquire() { 379  return tryAcquire(1, 0, MICROSECONDS); 380  } 381  382  /** 383  * Acquires the given number of permits from this {@code RateLimiter} if it can be obtained 384  * without exceeding the specified {@code timeout}, or returns {@code false} immediately (without 385  * waiting) if the permits would not have been granted before the timeout expired. 386  * 387  * @param permits the number of permits to acquire 388  * @param timeout the maximum time to wait for the permits. Negative values are treated as zero. 389  * @return {@code true} if the permits were acquired, {@code false} otherwise 390  * @throws IllegalArgumentException if the requested number of permits is negative or zero 391  * @since 28.0 392  */ 393  public boolean tryAcquire(int permits, Duration timeout) { 394  return tryAcquire(permits, toNanosSaturated(timeout), TimeUnit.NANOSECONDS); 395  } 396  397  /** 398  * Acquires the given number of permits from this {@code RateLimiter} if it can be obtained 399  * without exceeding the specified {@code timeout}, or returns {@code false} immediately (without 400  * waiting) if the permits would not have been granted before the timeout expired. 401  * 402  * @param permits the number of permits to acquire 403  * @param timeout the maximum time to wait for the permits. Negative values are treated as zero. 404  * @param unit the time unit of the timeout argument 405  * @return {@code true} if the permits were acquired, {@code false} otherwise 406  * @throws IllegalArgumentException if the requested number of permits is negative or zero 407  */ 408  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 409  public boolean tryAcquire(int permits, long timeout, TimeUnit unit) { 410  long timeoutMicros = max(unit.toMicros(timeout), 0); 411  checkPermits(permits); 412  long microsToWait; 413  synchronized (mutex()) { 414  long nowMicros = stopwatch.readMicros(); 415  if (!canAcquire(nowMicros, timeoutMicros)) { 416  return false; 417  } else { 418  microsToWait = reserveAndGetWaitLength(permits, nowMicros); 419  } 420  } 421  stopwatch.sleepMicrosUninterruptibly(microsToWait); 422  return true; 423  } 424  425  private boolean canAcquire(long nowMicros, long timeoutMicros) { 426  return queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros; 427  } 428  429  /** 430  * Reserves next ticket and returns the wait time that the caller must wait for. 431  * 432  * @return the required wait time, never negative 433  */ 434  final long reserveAndGetWaitLength(int permits, long nowMicros) { 435  long momentAvailable = reserveEarliestAvailable(permits, nowMicros); 436  return max(momentAvailable - nowMicros, 0); 437  } 438  439  /** 440  * Returns the earliest time that permits are available (with one caveat). 441  * 442  * @return the time that permits are available, or, if permits are available immediately, an 443  * arbitrary past or present time 444  */ 445  abstract long queryEarliestAvailable(long nowMicros); 446  447  /** 448  * Reserves the requested number of permits and returns the time that those permits can be used 449  * (with one caveat). 450  * 451  * @return the time that the permits may be used, or, if the permits may be used immediately, an 452  * arbitrary past or present time 453  */ 454  abstract long reserveEarliestAvailable(int permits, long nowMicros); 455  456  @Override 457  public String toString() { 458  return String.format(Locale.ROOT, "RateLimiter[stableRate=%3.1fqps]", getRate()); 459  } 460  461  abstract static class SleepingStopwatch { 462  /** Constructor for use by subclasses. */ 463  protected SleepingStopwatch() {} 464  465  /* 466  * We always hold the mutex when calling this. TODO(cpovirk): Is that important? Perhaps we need 467  * to guarantee that each call to reserveEarliestAvailable, etc. sees a value >= the previous? 468  * Also, is it OK that we don't hold the mutex when sleeping? 469  */ 470  protected abstract long readMicros(); 471  472  protected abstract void sleepMicrosUninterruptibly(long micros); 473  474  public static SleepingStopwatch createFromSystemTimer() { 475  return new SleepingStopwatch() { 476  final Stopwatch stopwatch = Stopwatch.createStarted(); 477  478  @Override 479  protected long readMicros() { 480  return stopwatch.elapsed(MICROSECONDS); 481  } 482  483  @Override 484  protected void sleepMicrosUninterruptibly(long micros) { 485  if (micros > 0) { 486  Uninterruptibles.sleepUninterruptibly(micros, MICROSECONDS); 487  } 488  } 489  }; 490  } 491  } 492  493  private static void checkPermits(int permits) { 494  checkArgument(permits > 0, "Requested permits (%s) must be positive", permits); 495  } 496 }