Coverage Summary for Class: CacheBuilder (com.google.common.cache)

Class Method, % Line, %
CacheBuilder 0% (0/48) 0% (0/146)
CacheBuilder$1 0% (0/2) 0% (0/2)
CacheBuilder$2 0% (0/2) 0% (0/2)
CacheBuilder$3 0% (0/2) 0% (0/2)
CacheBuilder$NullListener 0% (0/1) 0% (0/2)
CacheBuilder$OneWeigher 0% (0/2) 0% (0/3)
Total 0% (0/57) 0% (0/157)


1 /* 2  * Copyright (C) 2009 The Guava Authors 3  * 4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 5  * in compliance with the License. You may obtain a copy of the License at 6  * 7  * http://www.apache.org/licenses/LICENSE-2.0 8  * 9  * Unless required by applicable law or agreed to in writing, software distributed under the License 10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 11  * or implied. See the License for the specific language governing permissions and limitations under 12  * the License. 13  */ 14  15 package com.google.common.cache; 16  17 import static com.google.common.base.Preconditions.checkArgument; 18 import static com.google.common.base.Preconditions.checkNotNull; 19 import static com.google.common.base.Preconditions.checkState; 20  21 import com.google.common.annotations.GwtCompatible; 22 import com.google.common.annotations.GwtIncompatible; 23 import com.google.common.base.Ascii; 24 import com.google.common.base.Equivalence; 25 import com.google.common.base.MoreObjects; 26 import com.google.common.base.Supplier; 27 import com.google.common.base.Suppliers; 28 import com.google.common.base.Ticker; 29 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 30 import com.google.common.cache.AbstractCache.StatsCounter; 31 import com.google.common.cache.LocalCache.Strength; 32 import com.google.errorprone.annotations.CheckReturnValue; 33 import com.google.j2objc.annotations.J2ObjCIncompatible; 34 import java.util.ConcurrentModificationException; 35 import java.util.IdentityHashMap; 36 import java.util.Map; 37 import java.util.concurrent.ConcurrentHashMap; 38 import java.util.concurrent.TimeUnit; 39 import java.util.logging.Level; 40 import java.util.logging.Logger; 41 import org.checkerframework.checker.nullness.qual.Nullable; 42  43 /** 44  * A builder of {@link LoadingCache} and {@link Cache} instances. 45  * 46  * <h2>Prefer <a href="https://github.com/ben-manes/caffeine/wiki">Caffeine</a> over Guava's caching 47  * API</h2> 48  * 49  * <p>The successor to Guava's caching API is <a 50  * href="https://github.com/ben-manes/caffeine/wiki">Caffeine</a>. Its API is designed to make it a 51  * nearly drop-in replacement -- though it requires Java 8 APIs and is not available for Android or 52  * GWT/j2cl. Its equivalent to {@code CacheBuilder} is its <a 53  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/Caffeine.html">{@code 54  * Caffeine}</a> class. Caffeine offers better performance, more features (including asynchronous 55  * loading), and fewer <a 56  * href="https://github.com/google/guava/issues?q=is%3Aopen+is%3Aissue+label%3Apackage%3Dcache+label%3Atype%3Ddefect">bugs</a>. 57  * 58  * <p>Caffeine defines its own interfaces (<a 59  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/Cache.html">{@code 60  * Cache}</a>, <a 61  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/LoadingCache.html">{@code 62  * LoadingCache}</a>, <a 63  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/CacheLoader.html">{@code 64  * CacheLoader}</a>, etc.), so you can use Caffeine without needing to use any Guava types. 65  * Caffeine's types are better than Guava's, especially for <a 66  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncLoadingCache.html">their 67  * deep support for asynchronous operations</a>. But if you want to migrate to Caffeine with minimal 68  * code changes, you can use <a 69  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/guava/latest/com.github.benmanes.caffeine.guava/com/github/benmanes/caffeine/guava/CaffeinatedGuava.html">its 70  * {@code CaffeinatedGuava} adapter class</a>, which lets you build a Guava {@code Cache} or a Guava 71  * {@code LoadingCache} backed by a Guava {@code CacheLoader}. 72  * 73  * <p>Caffeine's API for asynchronous operations uses {@code CompletableFuture}: <a 74  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncLoadingCache.html#get(K)">{@code 75  * AsyncLoadingCache.get}</a> returns a {@code CompletableFuture}, and implementations of <a 76  * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncCacheLoader.html#asyncLoad(K,java.util.concurrent.Executor)">{@code 77  * AsyncCacheLoader.asyncLoad}</a> must return a {@code CompletableFuture}. Users of Guava's {@link 78  * com.google.common.util.concurrent.ListenableFuture} can adapt between the two {@code Future} 79  * types by using <a href="https://github.com/lukas-krecan/future-converter#java8-guava">{@code 80  * net.javacrumbs.futureconverter.java8guava.FutureConverter}</a>. 81  * 82  * <h2>More on {@code CacheBuilder}</h2> 83  * 84  * {@code CacheBuilder} builds caches with any combination of the following features: 85  * 86  * <ul> 87  * <li>automatic loading of entries into the cache 88  * <li>least-recently-used eviction when a maximum size is exceeded (note that the cache is 89  * divided into segments, each of which does LRU internally) 90  * <li>time-based expiration of entries, measured since last access or last write 91  * <li>keys automatically wrapped in {@code WeakReference} 92  * <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference} 93  * <li>notification of evicted (or otherwise removed) entries 94  * <li>accumulation of cache access statistics 95  * </ul> 96  * 97  * <p>These features are all optional; caches can be created using all or none of them. By default 98  * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 99  * 100  * <p>Usage example: 101  * 102  * <pre>{@code 103  * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 104  * .maximumSize(10000) 105  * .expireAfterWrite(Duration.ofMinutes(10)) 106  * .removalListener(MY_LISTENER) 107  * .build( 108  * new CacheLoader<Key, Graph>() { 109  * public Graph load(Key key) throws AnyException { 110  * return createExpensiveGraph(key); 111  * } 112  * }); 113  * }</pre> 114  * 115  * <p>Or equivalently, 116  * 117  * <pre>{@code 118  * // In real life this would come from a command-line flag or config file 119  * String spec = "maximumSize=10000,expireAfterWrite=10m"; 120  * 121  * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 122  * .removalListener(MY_LISTENER) 123  * .build( 124  * new CacheLoader<Key, Graph>() { 125  * public Graph load(Key key) throws AnyException { 126  * return createExpensiveGraph(key); 127  * } 128  * }); 129  * }</pre> 130  * 131  * <p>The returned cache is implemented as a hash table with similar performance characteristics to 132  * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 133  * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 134  * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 135  * modify the cache after the iterator is created, it is undefined which of these changes, if any, 136  * are reflected in that iterator. These iterators never throw {@link 137  * ConcurrentModificationException}. 138  * 139  * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link 140  * Object#equals equals} method) to determine equality for keys or values. However, if {@link 141  * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys. 142  * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity 143  * comparisons for values. 144  * 145  * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 146  * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 147  * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 148  * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 149  * requested. 150  * 151  * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 152  * maximumWeight} is requested entries may be evicted on each cache modification. 153  * 154  * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 155  * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 156  * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link 157  * Cache#size}, but will never be visible to read or write operations. 158  * 159  * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain 160  * #softValues softValues} are requested, it is possible for a key or value present in the cache to 161  * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from 162  * the cache on each cache modification, on occasional cache accesses, or on calls to {@link 163  * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to 164  * read or write operations. 165  * 166  * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 167  * will be performed during write operations, or during occasional read operations in the absence of 168  * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 169  * calling it should not be necessary with a high throughput cache. Only caches built with 170  * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 171  * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain 172  * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance. 173  * 174  * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 175  * retain all the configuration properties of the original cache. Note that the serialized form does 176  * <i>not</i> include cache contents, but only configuration. 177  * 178  * <p>See the Guava User Guide article on <a 179  * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 180  * explanation. 181  * 182  * @param <K> the most general key type this builder will be able to create caches for. This is 183  * normally {@code Object} unless it is constrained by using a method like {@code 184  * #removalListener} 185  * @param <V> the most general value type this builder will be able to create caches for. This is 186  * normally {@code Object} unless it is constrained by using a method like {@code 187  * #removalListener} 188  * @author Charles Fry 189  * @author Kevin Bourrillion 190  * @since 10.0 191  */ 192 @GwtCompatible(emulated = true) 193 public final class CacheBuilder<K, V> { 194  private static final int DEFAULT_INITIAL_CAPACITY = 16; 195  private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 196  197  @SuppressWarnings("GoodTime") // should be a java.time.Duration 198  private static final int DEFAULT_EXPIRATION_NANOS = 0; 199  200  @SuppressWarnings("GoodTime") // should be a java.time.Duration 201  private static final int DEFAULT_REFRESH_NANOS = 0; 202  203  static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 204  Suppliers.ofInstance( 205  new StatsCounter() { 206  @Override 207  public void recordHits(int count) {} 208  209  @Override 210  public void recordMisses(int count) {} 211  212  @SuppressWarnings("GoodTime") // b/122668874 213  @Override 214  public void recordLoadSuccess(long loadTime) {} 215  216  @SuppressWarnings("GoodTime") // b/122668874 217  @Override 218  public void recordLoadException(long loadTime) {} 219  220  @Override 221  public void recordEviction() {} 222  223  @Override 224  public CacheStats snapshot() { 225  return EMPTY_STATS; 226  } 227  }); 228  static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 229  230  static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 231  new Supplier<StatsCounter>() { 232  @Override 233  public StatsCounter get() { 234  return new SimpleStatsCounter(); 235  } 236  }; 237  238  enum NullListener implements RemovalListener<Object, Object> { 239  INSTANCE; 240  241  @Override 242  public void onRemoval(RemovalNotification<Object, Object> notification) {} 243  } 244  245  enum OneWeigher implements Weigher<Object, Object> { 246  INSTANCE; 247  248  @Override 249  public int weigh(Object key, Object value) { 250  return 1; 251  } 252  } 253  254  static final Ticker NULL_TICKER = 255  new Ticker() { 256  @Override 257  public long read() { 258  return 0; 259  } 260  }; 261  262  private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 263  264  static final int UNSET_INT = -1; 265  266  boolean strictParsing = true; 267  268  int initialCapacity = UNSET_INT; 269  int concurrencyLevel = UNSET_INT; 270  long maximumSize = UNSET_INT; 271  long maximumWeight = UNSET_INT; 272  @Nullable Weigher<? super K, ? super V> weigher; 273  274  @Nullable Strength keyStrength; 275  @Nullable Strength valueStrength; 276  277  @SuppressWarnings("GoodTime") // should be a java.time.Duration 278  long expireAfterWriteNanos = UNSET_INT; 279  280  @SuppressWarnings("GoodTime") // should be a java.time.Duration 281  long expireAfterAccessNanos = UNSET_INT; 282  283  @SuppressWarnings("GoodTime") // should be a java.time.Duration 284  long refreshNanos = UNSET_INT; 285  286  @Nullable Equivalence<Object> keyEquivalence; 287  @Nullable Equivalence<Object> valueEquivalence; 288  289  @Nullable RemovalListener<? super K, ? super V> removalListener; 290  @Nullable Ticker ticker; 291  292  Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 293  294  private CacheBuilder() {} 295  296  /** 297  * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 298  * strong values, and no automatic eviction of any kind. 299  * 300  * <p>Note that while this return type is {@code CacheBuilder<Object, Object>}, type parameters on 301  * the {@link #build} methods allow you to create a cache of any key and value type desired. 302  */ 303  @CheckReturnValue 304  public static CacheBuilder<Object, Object> newBuilder() { 305  return new CacheBuilder<>(); 306  } 307  308  /** 309  * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 310  * 311  * @since 12.0 312  */ 313  @GwtIncompatible // To be supported 314  @CheckReturnValue 315  public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 316  return spec.toCacheBuilder().lenientParsing(); 317  } 318  319  /** 320  * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 321  * This is especially useful for command-line configuration of a {@code CacheBuilder}. 322  * 323  * @param spec a String in the format specified by {@link CacheBuilderSpec} 324  * @since 12.0 325  */ 326  @GwtIncompatible // To be supported 327  @CheckReturnValue 328  public static CacheBuilder<Object, Object> from(String spec) { 329  return from(CacheBuilderSpec.parse(spec)); 330  } 331  332  /** 333  * Enables lenient parsing. Useful for tests and spec parsing. 334  * 335  * @return this {@code CacheBuilder} instance (for chaining) 336  */ 337  @GwtIncompatible // To be supported 338  CacheBuilder<K, V> lenientParsing() { 339  strictParsing = false; 340  return this; 341  } 342  343  /** 344  * Sets a custom {@code Equivalence} strategy for comparing keys. 345  * 346  * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 347  * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 348  * 349  * @return this {@code CacheBuilder} instance (for chaining) 350  */ 351  @GwtIncompatible // To be supported 352  CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 353  checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 354  keyEquivalence = checkNotNull(equivalence); 355  return this; 356  } 357  358  Equivalence<Object> getKeyEquivalence() { 359  return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 360  } 361  362  /** 363  * Sets a custom {@code Equivalence} strategy for comparing values. 364  * 365  * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 366  * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 367  * otherwise. 368  * 369  * @return this {@code CacheBuilder} instance (for chaining) 370  */ 371  @GwtIncompatible // To be supported 372  CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 373  checkState( 374  valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 375  this.valueEquivalence = checkNotNull(equivalence); 376  return this; 377  } 378  379  Equivalence<Object> getValueEquivalence() { 380  return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 381  } 382  383  /** 384  * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 385  * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 386  * having a hash table of size eight. Providing a large enough estimate at construction time 387  * avoids the need for expensive resizing operations later, but setting this value unnecessarily 388  * high wastes memory. 389  * 390  * @return this {@code CacheBuilder} instance (for chaining) 391  * @throws IllegalArgumentException if {@code initialCapacity} is negative 392  * @throws IllegalStateException if an initial capacity was already set 393  */ 394  public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 395  checkState( 396  this.initialCapacity == UNSET_INT, 397  "initial capacity was already set to %s", 398  this.initialCapacity); 399  checkArgument(initialCapacity >= 0); 400  this.initialCapacity = initialCapacity; 401  return this; 402  } 403  404  int getInitialCapacity() { 405  return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 406  } 407  408  /** 409  * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 410  * table is internally partitioned to try to permit the indicated number of concurrent updates 411  * without contention. Because assignment of entries to these partitions is not necessarily 412  * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 413  * accommodate as many threads as will ever concurrently modify the table. Using a significantly 414  * higher value than you need can waste space and time, and a significantly lower value can lead 415  * to thread contention. But overestimates and underestimates within an order of magnitude do not 416  * usually have much noticeable impact. A value of one permits only one thread to modify the cache 417  * at a time, but since read operations and cache loading computations can proceed concurrently, 418  * this still yields higher concurrency than full synchronization. 419  * 420  * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 421  * value, you should always choose it explicitly. 422  * 423  * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 424  * segments, each governed by its own write lock. The segment lock is taken once for each explicit 425  * write, and twice for each cache loading computation (once prior to loading the new value, and 426  * once after loading completes). Much internal cache management is performed at the segment 427  * granularity. For example, access queues and write queues are kept per segment when they are 428  * required by the selected eviction algorithm. As such, when writing unit tests it is not 429  * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 430  * behavior. 431  * 432  * <p>Note that future implementations may abandon segment locking in favor of more advanced 433  * concurrency controls. 434  * 435  * @return this {@code CacheBuilder} instance (for chaining) 436  * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 437  * @throws IllegalStateException if a concurrency level was already set 438  */ 439  public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 440  checkState( 441  this.concurrencyLevel == UNSET_INT, 442  "concurrency level was already set to %s", 443  this.concurrencyLevel); 444  checkArgument(concurrencyLevel > 0); 445  this.concurrencyLevel = concurrencyLevel; 446  return this; 447  } 448  449  int getConcurrencyLevel() { 450  return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 451  } 452  453  /** 454  * Specifies the maximum number of entries the cache may contain. 455  * 456  * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 457  * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 458  * resulting segment inside the cache <i>independently</i> limits its own size to approximately 459  * {@code maximumSize / concurrencyLevel}. 460  * 461  * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 462  * For example, the cache may evict an entry because it hasn't been used recently or very often. 463  * 464  * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into 465  * cache. This can be useful in testing, or to disable caching temporarily. 466  * 467  * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 468  * 469  * @param maximumSize the maximum size of the cache 470  * @return this {@code CacheBuilder} instance (for chaining) 471  * @throws IllegalArgumentException if {@code maximumSize} is negative 472  * @throws IllegalStateException if a maximum size or weight was already set 473  */ 474  public CacheBuilder<K, V> maximumSize(long maximumSize) { 475  checkState( 476  this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 477  checkState( 478  this.maximumWeight == UNSET_INT, 479  "maximum weight was already set to %s", 480  this.maximumWeight); 481  checkState(this.weigher == null, "maximum size can not be combined with weigher"); 482  checkArgument(maximumSize >= 0, "maximum size must not be negative"); 483  this.maximumSize = maximumSize; 484  return this; 485  } 486  487  /** 488  * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 489  * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 490  * corresponding call to {@link #weigher} prior to calling {@link #build}. 491  * 492  * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 493  * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 494  * resulting segment inside the cache <i>independently</i> limits its own weight to approximately 495  * {@code maximumWeight / concurrencyLevel}. 496  * 497  * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 498  * For example, the cache may evict an entry because it hasn't been used recently or very often. 499  * 500  * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded 501  * into cache. This can be useful in testing, or to disable caching temporarily. 502  * 503  * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 504  * effect on selecting which entry should be evicted next. 505  * 506  * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 507  * 508  * @param maximumWeight the maximum total weight of entries the cache may contain 509  * @return this {@code CacheBuilder} instance (for chaining) 510  * @throws IllegalArgumentException if {@code maximumWeight} is negative 511  * @throws IllegalStateException if a maximum weight or size was already set 512  * @since 11.0 513  */ 514  @GwtIncompatible // To be supported 515  public CacheBuilder<K, V> maximumWeight(long maximumWeight) { 516  checkState( 517  this.maximumWeight == UNSET_INT, 518  "maximum weight was already set to %s", 519  this.maximumWeight); 520  checkState( 521  this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 522  checkArgument(maximumWeight >= 0, "maximum weight must not be negative"); 523  this.maximumWeight = maximumWeight; 524  return this; 525  } 526  527  /** 528  * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 529  * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 530  * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 531  * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 532  * are thus effectively static during the lifetime of a cache entry. 533  * 534  * <p>When the weight of an entry is zero it will not be considered for size-based eviction 535  * (though it still may be evicted by other means). 536  * 537  * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 538  * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 539  * original reference or the returned reference may be used to complete configuration and build 540  * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 541  * building caches whose key or value types are incompatible with the types accepted by the 542  * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 543  * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 544  * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 545  * 546  * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 547  * cache whose key or value type is incompatible with the weigher, you will likely experience a 548  * {@link ClassCastException} at some <i>undefined</i> point in the future. 549  * 550  * @param weigher the weigher to use in calculating the weight of cache entries 551  * @return this {@code CacheBuilder} instance (for chaining) 552  * @throws IllegalArgumentException if {@code size} is negative 553  * @throws IllegalStateException if a maximum size was already set 554  * @since 11.0 555  */ 556  @GwtIncompatible // To be supported 557  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 558  Weigher<? super K1, ? super V1> weigher) { 559  checkState(this.weigher == null); 560  if (strictParsing) { 561  checkState( 562  this.maximumSize == UNSET_INT, 563  "weigher can not be combined with maximum size", 564  this.maximumSize); 565  } 566  567  // safely limiting the kinds of caches this can produce 568  @SuppressWarnings("unchecked") 569  CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 570  me.weigher = checkNotNull(weigher); 571  return me; 572  } 573  574  long getMaximumWeight() { 575  if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 576  return 0; 577  } 578  return (weigher == null) ? maximumSize : maximumWeight; 579  } 580  581  // Make a safe contravariant cast now so we don't have to do it over and over. 582  @SuppressWarnings("unchecked") 583  <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 584  return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 585  } 586  587  /** 588  * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 589  * WeakReference} (by default, strong references are used). 590  * 591  * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 592  * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore 593  * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap} 594  * does). 595  * 596  * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 597  * will never be visible to read or write operations; such entries are cleaned up as part of the 598  * routine maintenance described in the class javadoc. 599  * 600  * @return this {@code CacheBuilder} instance (for chaining) 601  * @throws IllegalStateException if the key strength was already set 602  */ 603  @GwtIncompatible // java.lang.ref.WeakReference 604  public CacheBuilder<K, V> weakKeys() { 605  return setKeyStrength(Strength.WEAK); 606  } 607  608  CacheBuilder<K, V> setKeyStrength(Strength strength) { 609  checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 610  keyStrength = checkNotNull(strength); 611  return this; 612  } 613  614  Strength getKeyStrength() { 615  return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 616  } 617  618  /** 619  * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 620  * WeakReference} (by default, strong references are used). 621  * 622  * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 623  * candidate for caching; consider {@link #softValues} instead. 624  * 625  * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 626  * comparison to determine equality of values. 627  * 628  * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 629  * but will never be visible to read or write operations; such entries are cleaned up as part of 630  * the routine maintenance described in the class javadoc. 631  * 632  * @return this {@code CacheBuilder} instance (for chaining) 633  * @throws IllegalStateException if the value strength was already set 634  */ 635  @GwtIncompatible // java.lang.ref.WeakReference 636  public CacheBuilder<K, V> weakValues() { 637  return setValueStrength(Strength.WEAK); 638  } 639  640  /** 641  * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 642  * SoftReference} (by default, strong references are used). Softly-referenced objects will be 643  * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 644  * demand. 645  * 646  * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 647  * #maximumSize(long) maximum size} instead of using soft references. You should only use this 648  * method if you are well familiar with the practical consequences of soft references. 649  * 650  * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 651  * comparison to determine equality of values. 652  * 653  * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 654  * but will never be visible to read or write operations; such entries are cleaned up as part of 655  * the routine maintenance described in the class javadoc. 656  * 657  * @return this {@code CacheBuilder} instance (for chaining) 658  * @throws IllegalStateException if the value strength was already set 659  */ 660  @GwtIncompatible // java.lang.ref.SoftReference 661  public CacheBuilder<K, V> softValues() { 662  return setValueStrength(Strength.SOFT); 663  } 664  665  CacheBuilder<K, V> setValueStrength(Strength strength) { 666  checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 667  valueStrength = checkNotNull(strength); 668  return this; 669  } 670  671  Strength getValueStrength() { 672  return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 673  } 674  675  /** 676  * Specifies that each entry should be automatically removed from the cache once a fixed duration 677  * has elapsed after the entry's creation, or the most recent replacement of its value. 678  * 679  * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 680  * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 681  * useful in testing, or to disable caching temporarily without a code change. 682  * 683  * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 684  * write operations. Expired entries are cleaned up as part of the routine maintenance described 685  * in the class javadoc. 686  * 687  * @param duration the length of time after an entry is created that it should be automatically 688  * removed 689  * @return this {@code CacheBuilder} instance (for chaining) 690  * @throws IllegalArgumentException if {@code duration} is negative 691  * @throws IllegalStateException if {@link #expireAfterWrite} was already set 692  * @throws ArithmeticException for durations greater than +/- approximately 292 years 693  * @since 25.0 694  */ 695  @J2ObjCIncompatible 696  @GwtIncompatible // java.time.Duration 697  @SuppressWarnings("GoodTime") // java.time.Duration decomposition 698  public CacheBuilder<K, V> expireAfterWrite(java.time.Duration duration) { 699  return expireAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 700  } 701  702  /** 703  * Specifies that each entry should be automatically removed from the cache once a fixed duration 704  * has elapsed after the entry's creation, or the most recent replacement of its value. 705  * 706  * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 707  * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 708  * useful in testing, or to disable caching temporarily without a code change. 709  * 710  * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 711  * write operations. Expired entries are cleaned up as part of the routine maintenance described 712  * in the class javadoc. 713  * 714  * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 715  * when feasible), use {@link #expireAfterWrite(Duration)} instead. 716  * 717  * @param duration the length of time after an entry is created that it should be automatically 718  * removed 719  * @param unit the unit that {@code duration} is expressed in 720  * @return this {@code CacheBuilder} instance (for chaining) 721  * @throws IllegalArgumentException if {@code duration} is negative 722  * @throws IllegalStateException if {@link #expireAfterWrite} was already set 723  */ 724  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 725  public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 726  checkState( 727  expireAfterWriteNanos == UNSET_INT, 728  "expireAfterWrite was already set to %s ns", 729  expireAfterWriteNanos); 730  checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 731  this.expireAfterWriteNanos = unit.toNanos(duration); 732  return this; 733  } 734  735  @SuppressWarnings("GoodTime") // nanos internally, should be Duration 736  long getExpireAfterWriteNanos() { 737  return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 738  } 739  740  /** 741  * Specifies that each entry should be automatically removed from the cache once a fixed duration 742  * has elapsed after the entry's creation, the most recent replacement of its value, or its last 743  * access. Access time is reset by all cache read and write operations (including {@code 744  * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 745  * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}}. So, 746  * for example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for 747  * the entries you retrieve. 748  * 749  * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 750  * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 751  * useful in testing, or to disable caching temporarily without a code change. 752  * 753  * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 754  * write operations. Expired entries are cleaned up as part of the routine maintenance described 755  * in the class javadoc. 756  * 757  * @param duration the length of time after an entry is last accessed that it should be 758  * automatically removed 759  * @return this {@code CacheBuilder} instance (for chaining) 760  * @throws IllegalArgumentException if {@code duration} is negative 761  * @throws IllegalStateException if {@link #expireAfterAccess} was already set 762  * @throws ArithmeticException for durations greater than +/- approximately 292 years 763  * @since 25.0 764  */ 765  @J2ObjCIncompatible 766  @GwtIncompatible // java.time.Duration 767  @SuppressWarnings("GoodTime") // java.time.Duration decomposition 768  public CacheBuilder<K, V> expireAfterAccess(java.time.Duration duration) { 769  return expireAfterAccess(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 770  } 771  772  /** 773  * Specifies that each entry should be automatically removed from the cache once a fixed duration 774  * has elapsed after the entry's creation, the most recent replacement of its value, or its last 775  * access. Access time is reset by all cache read and write operations (including {@code 776  * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 777  * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}. So, for 778  * example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for the 779  * entries you retrieve. 780  * 781  * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 782  * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 783  * useful in testing, or to disable caching temporarily without a code change. 784  * 785  * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 786  * write operations. Expired entries are cleaned up as part of the routine maintenance described 787  * in the class javadoc. 788  * 789  * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 790  * when feasible), use {@link #expireAfterAccess(Duration)} instead. 791  * 792  * @param duration the length of time after an entry is last accessed that it should be 793  * automatically removed 794  * @param unit the unit that {@code duration} is expressed in 795  * @return this {@code CacheBuilder} instance (for chaining) 796  * @throws IllegalArgumentException if {@code duration} is negative 797  * @throws IllegalStateException if {@link #expireAfterAccess} was already set 798  */ 799  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 800  public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 801  checkState( 802  expireAfterAccessNanos == UNSET_INT, 803  "expireAfterAccess was already set to %s ns", 804  expireAfterAccessNanos); 805  checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 806  this.expireAfterAccessNanos = unit.toNanos(duration); 807  return this; 808  } 809  810  @SuppressWarnings("GoodTime") // nanos internally, should be Duration 811  long getExpireAfterAccessNanos() { 812  return (expireAfterAccessNanos == UNSET_INT) 813  ? DEFAULT_EXPIRATION_NANOS 814  : expireAfterAccessNanos; 815  } 816  817  /** 818  * Specifies that active entries are eligible for automatic refresh once a fixed duration has 819  * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 820  * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 821  * CacheLoader#reload}. 822  * 823  * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 824  * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 825  * implementation; otherwise refreshes will be performed during unrelated cache read and write 826  * operations. 827  * 828  * <p>Currently automatic refreshes are performed when the first stale request for an entry 829  * occurs. The request triggering refresh will make a synchronous call to {@link 830  * CacheLoader#reload} 831  * to obtain a future of the new value. If the returned future is already complete, it is returned 832  * immediately. Otherwise, the old value is returned. 833  * 834  * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 835  * 836  * @param duration the length of time after an entry is created that it should be considered 837  * stale, and thus eligible for refresh 838  * @return this {@code CacheBuilder} instance (for chaining) 839  * @throws IllegalArgumentException if {@code duration} is negative 840  * @throws IllegalStateException if {@link #refreshAfterWrite} was already set 841  * @throws ArithmeticException for durations greater than +/- approximately 292 years 842  * @since 25.0 843  */ 844  @J2ObjCIncompatible 845  @GwtIncompatible // java.time.Duration 846  @SuppressWarnings("GoodTime") // java.time.Duration decomposition 847  public CacheBuilder<K, V> refreshAfterWrite(java.time.Duration duration) { 848  return refreshAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 849  } 850  851  /** 852  * Specifies that active entries are eligible for automatic refresh once a fixed duration has 853  * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 854  * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 855  * CacheLoader#reload}. 856  * 857  * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 858  * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 859  * implementation; otherwise refreshes will be performed during unrelated cache read and write 860  * operations. 861  * 862  * <p>Currently automatic refreshes are performed when the first stale request for an entry 863  * occurs. The request triggering refresh will make a synchronous call to {@link 864  * CacheLoader#reload} 865  * and immediately return the new value if the returned future is complete, and the old value 866  * otherwise. 867  * 868  * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 869  * 870  * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 871  * when feasible), use {@link #refreshAfterWrite(Duration)} instead. 872  * 873  * @param duration the length of time after an entry is created that it should be considered 874  * stale, and thus eligible for refresh 875  * @param unit the unit that {@code duration} is expressed in 876  * @return this {@code CacheBuilder} instance (for chaining) 877  * @throws IllegalArgumentException if {@code duration} is negative 878  * @throws IllegalStateException if {@link #refreshAfterWrite} was already set 879  * @since 11.0 880  */ 881  @GwtIncompatible // To be supported (synchronously). 882  @SuppressWarnings("GoodTime") // should accept a java.time.Duration 883  public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 884  checkNotNull(unit); 885  checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 886  checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 887  this.refreshNanos = unit.toNanos(duration); 888  return this; 889  } 890  891  @SuppressWarnings("GoodTime") // nanos internally, should be Duration 892  long getRefreshNanos() { 893  return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 894  } 895  896  /** 897  * Specifies a nanosecond-precision time source for this cache. By default, {@link 898  * System#nanoTime} is used. 899  * 900  * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 901  * time source. 902  * 903  * @return this {@code CacheBuilder} instance (for chaining) 904  * @throws IllegalStateException if a ticker was already set 905  */ 906  public CacheBuilder<K, V> ticker(Ticker ticker) { 907  checkState(this.ticker == null); 908  this.ticker = checkNotNull(ticker); 909  return this; 910  } 911  912  Ticker getTicker(boolean recordsTime) { 913  if (ticker != null) { 914  return ticker; 915  } 916  return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 917  } 918  919  /** 920  * Specifies a listener instance that caches should notify each time an entry is removed for any 921  * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 922  * as part of the routine maintenance described in the class documentation above. 923  * 924  * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 925  * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 926  * same instance, but only the returned reference has the correct generic type information so as 927  * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 928  * the class documentation above, configuring a builder and building your cache in a single 929  * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 930  * by a cache operation at some <i>undefined</i> point in the future. 931  * 932  * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 933  * the {@code Cache} user, only logged via a {@link Logger}. 934  * 935  * @return the cache builder reference that should be used instead of {@code this} for any 936  * remaining configuration and cache building 937  * @return this {@code CacheBuilder} instance (for chaining) 938  * @throws IllegalStateException if a removal listener was already set 939  */ 940  @CheckReturnValue 941  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 942  RemovalListener<? super K1, ? super V1> listener) { 943  checkState(this.removalListener == null); 944  945  // safely limiting the kinds of caches this can produce 946  @SuppressWarnings("unchecked") 947  CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 948  me.removalListener = checkNotNull(listener); 949  return me; 950  } 951  952  // Make a safe contravariant cast now so we don't have to do it over and over. 953  @SuppressWarnings("unchecked") 954  <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 955  return (RemovalListener<K1, V1>) 956  MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 957  } 958  959  /** 960  * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 961  * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 962  * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 963  * cache operation. 964  * 965  * @return this {@code CacheBuilder} instance (for chaining) 966  * @since 12.0 (previously, stats collection was automatic) 967  */ 968  public CacheBuilder<K, V> recordStats() { 969  statsCounterSupplier = CACHE_STATS_COUNTER; 970  return this; 971  } 972  973  boolean isRecordingStats() { 974  return statsCounterSupplier == CACHE_STATS_COUNTER; 975  } 976  977  Supplier<? extends StatsCounter> getStatsCounterSupplier() { 978  return statsCounterSupplier; 979  } 980  981  /** 982  * Builds a cache, which either returns an already-loaded value for a given key or atomically 983  * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 984  * loading the value for this key, simply waits for that thread to finish and returns its loaded 985  * value. Note that multiple threads can concurrently load values for distinct keys. 986  * 987  * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 988  * invoked again to create multiple independent caches. 989  * 990  * @param loader the cache loader used to obtain new values 991  * @return a cache having the requested features 992  */ 993  @CheckReturnValue 994  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 995  CacheLoader<? super K1, V1> loader) { 996  checkWeightWithWeigher(); 997  return new LocalCache.LocalLoadingCache<>(this, loader); 998  } 999  1000  /** 1001  * Builds a cache which does not automatically load values when keys are requested. 1002  * 1003  * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code 1004  * CacheLoader}. 1005  * 1006  * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 1007  * invoked again to create multiple independent caches. 1008  * 1009  * @return a cache having the requested features 1010  * @since 11.0 1011  */ 1012  @CheckReturnValue 1013  public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 1014  checkWeightWithWeigher(); 1015  checkNonLoadingCache(); 1016  return new LocalCache.LocalManualCache<>(this); 1017  } 1018  1019  private void checkNonLoadingCache() { 1020  checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 1021  } 1022  1023  private void checkWeightWithWeigher() { 1024  if (weigher == null) { 1025  checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 1026  } else { 1027  if (strictParsing) { 1028  checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 1029  } else { 1030  if (maximumWeight == UNSET_INT) { 1031  logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 1032  } 1033  } 1034  } 1035  } 1036  1037  /** 1038  * Returns a string representation for this CacheBuilder instance. The exact form of the returned 1039  * string is not specified. 1040  */ 1041  @Override 1042  public String toString() { 1043  MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 1044  if (initialCapacity != UNSET_INT) { 1045  s.add("initialCapacity", initialCapacity); 1046  } 1047  if (concurrencyLevel != UNSET_INT) { 1048  s.add("concurrencyLevel", concurrencyLevel); 1049  } 1050  if (maximumSize != UNSET_INT) { 1051  s.add("maximumSize", maximumSize); 1052  } 1053  if (maximumWeight != UNSET_INT) { 1054  s.add("maximumWeight", maximumWeight); 1055  } 1056  if (expireAfterWriteNanos != UNSET_INT) { 1057  s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 1058  } 1059  if (expireAfterAccessNanos != UNSET_INT) { 1060  s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 1061  } 1062  if (keyStrength != null) { 1063  s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 1064  } 1065  if (valueStrength != null) { 1066  s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 1067  } 1068  if (keyEquivalence != null) { 1069  s.addValue("keyEquivalence"); 1070  } 1071  if (valueEquivalence != null) { 1072  s.addValue("valueEquivalence"); 1073  } 1074  if (removalListener != null) { 1075  s.addValue("removalListener"); 1076  } 1077  return s.toString(); 1078  } 1079  1080  /** 1081  * Returns the number of nanoseconds of the given duration without throwing or overflowing. 1082  * 1083  * <p>Instead of throwing {@link ArithmeticException}, this method silently saturates to either 1084  * {@link Long#MAX_VALUE} or {@link Long#MIN_VALUE}. This behavior can be useful when decomposing 1085  * a duration in order to call a legacy API which requires a {@code long, TimeUnit} pair. 1086  */ 1087  @GwtIncompatible // java.time.Duration 1088  @SuppressWarnings("GoodTime") // duration decomposition 1089  private static long toNanosSaturated(java.time.Duration duration) { 1090  // Using a try/catch seems lazy, but the catch block will rarely get invoked (except for 1091  // durations longer than approximately +/- 292 years). 1092  try { 1093  return duration.toNanos(); 1094  } catch (ArithmeticException tooBig) { 1095  return duration.isNegative() ? Long.MIN_VALUE : Long.MAX_VALUE; 1096  } 1097  } 1098 }