BigIntegerMath.java

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.math.RoundingMode.CEILING;
import static java.math.RoundingMode.FLOOR;
import static java.math.RoundingMode.HALF_DOWN;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.UNNECESSARY;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;

/**
 * A class for arithmetic on values of type {@code BigInteger}.
 *
 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
 *
 * <p>Similar functionality for {@code int} and for {@code long} can be found in {@link IntMath} and
 * {@link LongMath} respectively.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
@ElementTypesAreNonnullByDefault
public final class BigIntegerMath {
  /**
   * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to
   * {@code BigInteger.valueOf(2).pow(log2(x, CEILING))}.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @since 20.0
   */
  @Beta
  public static BigInteger ceilingPowerOfTwo(BigInteger x) {
    return BigInteger.ZERO.setBit(log2(x, CEILING));
  }

  /**
   * Returns the largest power of two less than or equal to {@code x}. This is equivalent to {@code
   * BigInteger.valueOf(2).pow(log2(x, FLOOR))}.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @since 20.0
   */
  @Beta
  public static BigInteger floorPowerOfTwo(BigInteger x) {
    return BigInteger.ZERO.setBit(log2(x, FLOOR));
  }

  /** Returns {@code true} if {@code x} represents a power of two. */
  public static boolean isPowerOfTwo(BigInteger x) {
    checkNotNull(x);
    return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1;
  }

  /**
   * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *     is not a power of two
   */
  @SuppressWarnings("fallthrough")
  // TODO(kevinb): remove after this warning is disabled globally
  public static int log2(BigInteger x, RoundingMode mode) {
    checkPositive("x", checkNotNull(x));
    int logFloor = x.bitLength() - 1;
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through
      case DOWN:
      case FLOOR:
        return logFloor;

      case UP:
      case CEILING:
        return isPowerOfTwo(x) ? logFloor : logFloor + 1;

      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) {
          BigInteger halfPower =
              SQRT2_PRECOMPUTED_BITS.shiftRight(SQRT2_PRECOMPUTE_THRESHOLD - logFloor);
          if (x.compareTo(halfPower) <= 0) {
            return logFloor;
          } else {
            return logFloor + 1;
          }
        }
        // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
        //
        // To determine which side of logFloor.5 the logarithm is,
        // we compare x^2 to 2^(2 * logFloor + 1).
        BigInteger x2 = x.pow(2);
        int logX2Floor = x2.bitLength() - 1;
        return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1;

      default:
        throw new AssertionError();
    }
  }

  /*
   * The maximum number of bits in a square root for which we'll precompute an explicit half power
   * of two. This can be any value, but higher values incur more class load time and linearly
   * increasing memory consumption.
   */
  @VisibleForTesting static final int SQRT2_PRECOMPUTE_THRESHOLD = 256;

  @VisibleForTesting
  static final BigInteger SQRT2_PRECOMPUTED_BITS =
      new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16);

  /**
   * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *     is not a power of ten
   */
  @GwtIncompatible // TODO
  @SuppressWarnings("fallthrough")
  public static int log10(BigInteger x, RoundingMode mode) {
    checkPositive("x", x);
    if (fitsInLong(x)) {
      return LongMath.log10(x.longValue(), mode);
    }

    int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10);
    BigInteger approxPow = BigInteger.TEN.pow(approxLog10);
    int approxCmp = approxPow.compareTo(x);

    /*
     * We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and
     * 10^floor(log10(x)).
     */

    if (approxCmp > 0) {
      /*
       * The code is written so that even completely incorrect approximations will still yield the
       * correct answer eventually, but in practice this branch should almost never be entered, and
       * even then the loop should not run more than once.
       */
      do {
        approxLog10--;
        approxPow = approxPow.divide(BigInteger.TEN);
        approxCmp = approxPow.compareTo(x);
      } while (approxCmp > 0);
    } else {
      BigInteger nextPow = BigInteger.TEN.multiply(approxPow);
      int nextCmp = nextPow.compareTo(x);
      while (nextCmp <= 0) {
        approxLog10++;
        approxPow = nextPow;
        approxCmp = nextCmp;
        nextPow = BigInteger.TEN.multiply(approxPow);
        nextCmp = nextPow.compareTo(x);
      }
    }

    int floorLog = approxLog10;
    BigInteger floorPow = approxPow;
    int floorCmp = approxCmp;

    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(floorCmp == 0);
        // fall through
      case FLOOR:
      case DOWN:
        return floorLog;

      case CEILING:
      case UP:
        return floorPow.equals(x) ? floorLog : floorLog + 1;

      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5
        BigInteger x2 = x.pow(2);
        BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN);
        return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1;
      default:
        throw new AssertionError();
    }
  }

  private static final double LN_10 = Math.log(10);
  private static final double LN_2 = Math.log(2);

  /**
   * Returns the square root of {@code x}, rounded with the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x < 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code
   *     sqrt(x)} is not an integer
   */
  @GwtIncompatible // TODO
  @SuppressWarnings("fallthrough")
  public static BigInteger sqrt(BigInteger x, RoundingMode mode) {
    checkNonNegative("x", x);
    if (fitsInLong(x)) {
      return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode));
    }
    BigInteger sqrtFloor = sqrtFloor(x);
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through
      case FLOOR:
      case DOWN:
        return sqrtFloor;
      case CEILING:
      case UP:
        int sqrtFloorInt = sqrtFloor.intValue();
        boolean sqrtFloorIsExact =
            (sqrtFloorInt * sqrtFloorInt == x.intValue()) // fast check mod 2^32
                && sqrtFloor.pow(2).equals(x); // slow exact check
        return sqrtFloorIsExact ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor);
        /*
         * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x
         * and halfSquare are integers, this is equivalent to testing whether or not x <=
         * halfSquare.
         */
        return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
      default:
        throw new AssertionError();
    }
  }

  @GwtIncompatible // TODO
  private static BigInteger sqrtFloor(BigInteger x) {
    /*
     * Adapted from Hacker's Delight, Figure 11-1.
     *
     * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and
     * then we can get a double approximation of the square root. Then, we iteratively improve this
     * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2.
     * This iteration has the following two properties:
     *
     * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is
     * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean,
     * and the arithmetic mean is always higher than the geometric mean.
     *
     * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles
     * with each iteration, so this algorithm takes O(log(digits)) iterations.
     *
     * We start out with a double-precision approximation, which may be higher or lower than the
     * true value. Therefore, we perform at least one Newton iteration to get a guess that's
     * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
     */
    BigInteger sqrt0;
    int log2 = log2(x, FLOOR);
    if (log2 < Double.MAX_EXPONENT) {
      sqrt0 = sqrtApproxWithDoubles(x);
    } else {
      int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even!
      /*
       * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be
       * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift).
       */
      sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
    }
    BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
    if (sqrt0.equals(sqrt1)) {
      return sqrt0;
    }
    do {
      sqrt0 = sqrt1;
      sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
    } while (sqrt1.compareTo(sqrt0) < 0);
    return sqrt0;
  }

  @GwtIncompatible // TODO
  private static BigInteger sqrtApproxWithDoubles(BigInteger x) {
    return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN);
  }

  /**
   * Returns {@code x}, rounded to a {@code double} with the specified rounding mode. If {@code x}
   * is precisely representable as a {@code double}, its {@code double} value will be returned;
   * otherwise, the rounding will choose between the two nearest representable values with {@code
   * mode}.
   *
   * <p>For the case of {@link RoundingMode#HALF_DOWN}, {@code HALF_UP}, and {@code HALF_EVEN},
   * infinite {@code double} values are considered infinitely far away. For example, 2^2000 is not
   * representable as a double, but {@code roundToDouble(BigInteger.valueOf(2).pow(2000), HALF_UP)}
   * will return {@code Double.MAX_VALUE}, not {@code Double.POSITIVE_INFINITY}.
   *
   * <p>For the case of {@link RoundingMode#HALF_EVEN}, this implementation uses the IEEE 754
   * default rounding mode: if the two nearest representable values are equally near, the one with
   * the least significant bit zero is chosen. (In such cases, both of the nearest representable
   * values are even integers; this method returns the one that is a multiple of a greater power of
   * two.)
   *
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *     is not precisely representable as a {@code double}
   * @since 30.0
   */
  @GwtIncompatible
  public static double roundToDouble(BigInteger x, RoundingMode mode) {
    return BigIntegerToDoubleRounder.INSTANCE.roundToDouble(x, mode);
  }

  @GwtIncompatible
  private static class BigIntegerToDoubleRounder extends ToDoubleRounder<BigInteger> {
    static final BigIntegerToDoubleRounder INSTANCE = new BigIntegerToDoubleRounder();

    private BigIntegerToDoubleRounder() {}

    @Override
    double roundToDoubleArbitrarily(BigInteger bigInteger) {
      return DoubleUtils.bigToDouble(bigInteger);
    }

    @Override
    int sign(BigInteger bigInteger) {
      return bigInteger.signum();
    }

    @Override
    BigInteger toX(double d, RoundingMode mode) {
      return DoubleMath.roundToBigInteger(d, mode);
    }

    @Override
    BigInteger minus(BigInteger a, BigInteger b) {
      return a.subtract(b);
    }
  }

  /**
   * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code
   * RoundingMode}.
   *
   * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
   *     is not an integer multiple of {@code b}
   */
  @GwtIncompatible // TODO
  public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
    BigDecimal pDec = new BigDecimal(p);
    BigDecimal qDec = new BigDecimal(q);
    return pDec.divide(qDec, 0, mode).toBigIntegerExact();
  }

  /**
   * Returns {@code n!}, that is, the product of the first {@code n} positive integers, or {@code 1}
   * if {@code n == 0}.
   *
   * <p><b>Warning:</b> the result takes <i>O(n log n)</i> space, so use cautiously.
   *
   * <p>This uses an efficient binary recursive algorithm to compute the factorial with balanced
   * multiplies. It also removes all the 2s from the intermediate products (shifting them back in at
   * the end).
   *
   * @throws IllegalArgumentException if {@code n < 0}
   */
  public static BigInteger factorial(int n) {
    checkNonNegative("n", n);

    // If the factorial is small enough, just use LongMath to do it.
    if (n < LongMath.factorials.length) {
      return BigInteger.valueOf(LongMath.factorials[n]);
    }

    // Pre-allocate space for our list of intermediate BigIntegers.
    int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING);
    ArrayList<BigInteger> bignums = new ArrayList<>(approxSize);

    // Start from the pre-computed maximum long factorial.
    int startingNumber = LongMath.factorials.length;
    long product = LongMath.factorials[startingNumber - 1];
    // Strip off 2s from this value.
    int shift = Long.numberOfTrailingZeros(product);
    product >>= shift;

    // Use floor(log2(num)) + 1 to prevent overflow of multiplication.
    int productBits = LongMath.log2(product, FLOOR) + 1;
    int bits = LongMath.log2(startingNumber, FLOOR) + 1;
    // Check for the next power of two boundary, to save us a CLZ operation.
    int nextPowerOfTwo = 1 << (bits - 1);

    // Iteratively multiply the longs as big as they can go.
    for (long num = startingNumber; num <= n; num++) {
      // Check to see if the floor(log2(num)) + 1 has changed.
      if ((num & nextPowerOfTwo) != 0) {
        nextPowerOfTwo <<= 1;
        bits++;
      }
      // Get rid of the 2s in num.
      int tz = Long.numberOfTrailingZeros(num);
      long normalizedNum = num >> tz;
      shift += tz;
      // Adjust floor(log2(num)) + 1.
      int normalizedBits = bits - tz;
      // If it won't fit in a long, then we store off the intermediate product.
      if (normalizedBits + productBits >= Long.SIZE) {
        bignums.add(BigInteger.valueOf(product));
        product = 1;
        productBits = 0;
      }
      product *= normalizedNum;
      productBits = LongMath.log2(product, FLOOR) + 1;
    }
    // Check for leftovers.
    if (product > 1) {
      bignums.add(BigInteger.valueOf(product));
    }
    // Efficiently multiply all the intermediate products together.
    return listProduct(bignums).shiftLeft(shift);
  }

  static BigInteger listProduct(List<BigInteger> nums) {
    return listProduct(nums, 0, nums.size());
  }

  static BigInteger listProduct(List<BigInteger> nums, int start, int end) {
    switch (end - start) {
      case 0:
        return BigInteger.ONE;
      case 1:
        return nums.get(start);
      case 2:
        return nums.get(start).multiply(nums.get(start + 1));
      case 3:
        return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2));
      default:
        // Otherwise, split the list in half and recursively do this.
        int m = (end + start) >>> 1;
        return listProduct(nums, start, m).multiply(listProduct(nums, m, end));
    }
  }

  /**
   * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
   * {@code k}, that is, {@code n! / (k! (n - k)!)}.
   *
   * <p><b>Warning:</b> the result can take as much as <i>O(k log n)</i> space.
   *
   * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
   */
  public static BigInteger binomial(int n, int k) {
    checkNonNegative("n", n);
    checkNonNegative("k", k);
    checkArgument(k <= n, "k (%s) > n (%s)", k, n);
    if (k > (n >> 1)) {
      k = n - k;
    }
    if (k < LongMath.biggestBinomials.length && n <= LongMath.biggestBinomials[k]) {
      return BigInteger.valueOf(LongMath.binomial(n, k));
    }

    BigInteger accum = BigInteger.ONE;

    long numeratorAccum = n;
    long denominatorAccum = 1;

    int bits = LongMath.log2(n, CEILING);

    int numeratorBits = bits;

    for (int i = 1; i < k; i++) {
      int p = n - i;
      int q = i + 1;

      // log2(p) >= bits - 1, because p >= n/2

      if (numeratorBits + bits >= Long.SIZE - 1) {
        // The numerator is as big as it can get without risking overflow.
        // Multiply numeratorAccum / denominatorAccum into accum.
        accum =
            accum
                .multiply(BigInteger.valueOf(numeratorAccum))
                .divide(BigInteger.valueOf(denominatorAccum));
        numeratorAccum = p;
        denominatorAccum = q;
        numeratorBits = bits;
      } else {
        // We can definitely multiply into the long accumulators without overflowing them.
        numeratorAccum *= p;
        denominatorAccum *= q;
        numeratorBits += bits;
      }
    }
    return accum
        .multiply(BigInteger.valueOf(numeratorAccum))
        .divide(BigInteger.valueOf(denominatorAccum));
  }

  // Returns true if BigInteger.valueOf(x.longValue()).equals(x).
  @GwtIncompatible // TODO
  static boolean fitsInLong(BigInteger x) {
    return x.bitLength() <= Long.SIZE - 1;
  }

  private BigIntegerMath() {}
}